Лабораторная работа 01 определение плотности твердых тел москва 2005 г. Лабораторная работа 101



Скачать 155.13 Kb.
Дата29.04.2013
Размер155.13 Kb.
ТипЛабораторная работа

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ «МАМИ»

Кафедра физики



ЛАБОРАТОРНАЯ РАБОТА 1.01



ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ ТВЕРДЫХ ТЕЛ

Москва 2005 г.




Лабораторная работа 101

Теория ошибок, определение плотности твердых тел.

В лабораторном практикуме студенты при выполнении работ должны производить измерения, но при использовании даже очень точных и чувствительных приборов и наилучших условий проведения эксперимента во всяком измерении содержится ошибка (погрешность) характер и причины которой могут быть различными. Существуют методы анализа и учета влияния различных погрешностей на результаты измерений. Все погрешности (ошибки) измерений принято подразделять на систематические и случайные.

Систематические ошибки обусловлены постоянными, но односторонними внешними воздействиями. Например, измерение температуры термометром, у которого нулевая точка смешена, будет систематически неправильным, пока в результаты измерений не будет внесена соответствующая поправка.

Так как систематическая ошибка имеет одно и тоже значение, ее нельзя устранить увеличением числа повторных измерений. Но можно уменьшить систематическую ошибку, критически анализируя факторы, которые могут повлиять на результаты, проверяя используемые приборы по соответствующим эталонам, внося поправки в показания приборов, используя более точные приборы и инструменты.

Случайные ошибки при измерениях обусловлены влиянием большого числа факторов, случайным образом изменяющихся в процессе эксперимента. Например, источником случайных ошибок при взвешивании на аналитических весах может явиться неоднородность в распределении температуры в различных частях весов, влияние колебаний стола из-за проезжающего мимо здания грузовика и т.п.

При повторных измерениях случайные ошибки с одинаковой вероятностью приводят к отклонениям значений измеряемых величин от истинного значения как в сторону увеличения, так и в сторону уменьшения, т.е. случайные ошибки имеют разные численные значения и знаки.

Полностью исключить случайные ошибки нельзя, но их можно уменьшить за счет увеличения числа измерений при одних и тех же условиях эксперимента.

Итак, при измерениях неизбежно возникают погрешности. Теория погрешностей указывает на то, как следует вести измерения и их обработку, чтобы допущенные ошибки были минимальными. Кроме того, устанавливаются пределы, внутри которых заключается точное значение определяемой величины.

ТЕОРИЯ ПОГРЕШНОСТЕЙ


I. ПОГРЕШНОСТИ ПРИ ПРЯМЫХ ИЗМЕРЕНИЯХ

Прямыми измерениями называются такие, при которых измерение величины производится непосредственно по шкале прибора.
Например,

2

измерение длины штангенциркулем, измерение веса тела на весах, определение промежут­ков времени с помощью секундомера. Если отклонение результатов измерений от истинного значения измеряемой величины происходит как в сторону увеличения, так и в сторону уменьшения результатов из­мерений, то наиболее вероятным значением измеряемой величины будет среднее арифметическое всех сделанных измерений:

, (1)

где  результаты отдельных измерений, n  число измерений.

Для характеристики степени приближения к истинному значению измеря­емой величины вводится понятие абсолютной погрешности  величины, показы­вающей насколько найденное (среднее арифметическое) значение может отли­чаться от истинного значения измеряемой величины.

Для определения абсолютной погрешности сначала нужно найти отклонения каж­дого отдельного измерения от среднего арифметического: , где  отклонение данного измерения, равное разности между сред­ним значением измеряемой величины и результатом этого измерения .

Случайная погрешность вычисляется по формуле:

, (2)

где  модули отклонений каж­дого отдельного измерения от среднего арифметического значения.

Из формулы (2) и теории вероятностей следует, что с увеличением числа измерений n случайная погрешность будет уменьшаться.

В качестве систематической погрешности берется приборная погрешность, равная половине цены деления шкалы прибора. Ценой деления прибора называется минимальная величина, измеряемая прибором.

В общем случае необходимо принимать во внимание как случайные, так и систематические погрешности прямых измерений. Поэтому абсолютная пог­решность при прямых измерениях рассчитывается по формуле:
(3)
где  случайная погрешностей, определяемых по формуле (2),
3
систематическая погрешность прибора, инструмента.

Примечание: Если случайная погрешность много меньше систематической, то для повышения точности результата измерений нет смысла увеличивать число измерений, а нужно принять меры к уменьшению систематической погрешности (например, использовать более точные приборы).

Пример. Пусть измеряется диаметр цилиндрического стержня с помощью штанген­циркуля и делается 5 измерений: 34.50 мм, 34.65 мм, 34.30 мм,

34.70 мм, 34.55 мм.
Среднее арифметическое всех сделанных измерений:


Полученное значение даёт наиболее вероятное значение измеряемой величины D.

Для нахождения случайной погрешности нужно найти абсолютное значение отклонения каждого из 5-ти измерений от среднего арифметического и затем определить среднее значение этих отклонений:


Цена деления штангенциркуля равна 0.05 мм, следовательно, систематическая погрешность равна .

Абсолютная погрешность при измерении диаметра стержня:

Результат измерений принято записывать следующим образом:
.
(Результат измерений 34,54 мм и абсолютная погрешность 0,12 мм должны заканчиваться в одинаковом разряде)

Для характеристики точности измерения вводится понятие относительной погрешности:


Относительная погрешность ε представляет собой отношение абсолютной погрешности к среднему значению измеряемой величины. В нашем примере относительная погрешность при измерении диаметра:

4

Относительная погрешность является безразмерной величиной. Она показывает, какую часть измеряемой величины составляет абсолютная погрешность.

Иногда относительная погрешность выражается в процентах:




I I. ПОГРЕШНОСТЬ ПРИ КОСВЕННЫХ ИЗМЕРЕНИЯХ.
В большинстве случаев в лабораторном практикуме нельзя определить искомую физическую величину непосредственно по приборам. В этом случае прибегают к косвенным измерениям. Косвенными измерениями являются измерения, полученные на основе прямых измерений и подсчитанные по математическим формулам.

Например, объем цилиндра определяется по формуле , где с по­мощью прямых измерений определяется диаметр цилиндра D и его высота h, объем же получается в результате косвенных измерений.

В таких случаях погрешность косвенного измерения зависит не только от погрешностей прямых измерений, но и от вида той математической формулы, по которой находится физическая величина.

Для нахождения погрешностей косвенных измерений удобно воспользо­ваться правилами дифференциального исчисления, считая искомую величину функцией, а величины, непосредственно измеряемые приборами, ее аргу­ментами. Пусть вид функциональной зависимости определяется формулой , где А  результат косвенного измерения,  ре­зультаты прямых измерений. По определению относительная погрешность равна

(5)

С другой стороны . Так как погрешность всегда много меньше измеряемой величины А, ошибки можно считать малыми величинами. Это дает возможность замены знака дифференциала d на знак абсолютной ошибки . То есть, можно записать: .

5

Из сопоставления приведенных формул следует, что относительную погреш­ность косвенного измерения можно найти путем:

  1. логарифмирования исходного выражения ;

  2. последующего дифференцирования ;

  3. заменой знака дифференциала d на знак абсолютной погрешности ;

  4. заменой всех знаков минус на знаки плюс перед знаками абсолютных погрешностей .


Пример.
Для определения плотности цилиндрического тела применяется формула:
,
где m  масса тела, D  диаметр, h  высота. Величины m, D, h определяются в результате прямых измерений. Плотность определяется из косвенных изме­рений. Для нахождения относительной погрешности, выполняем следующие действия:

  1. находим натуральный логарифм исходного выражения

,


  1. выполняем дифференцирование : ,




  1. заменяем знак d на знак : ,




  1. перед всеми знаками ставим знаки плюс .


Далее можно найти абсолютную погрешность: ,
где  абсолютная погрешность косвенного измерения,  среднее значение искомой величины, ε – относительная погрешность.
Примечание.

Иногда в зависимости от расчетной формулы удобнее вначале найти абсолют­ную погрешность непосредственно, не связывая ее с относительной погреш­ностью. Для этого используют следующее правило для нахождения абсолютной ошибки при косвенном измерении:

6

1) дифференцируют исходное выражение;

2) заменяют знак дифференциала d на знак погрешности ;

3) перед всеми знаками ставят знаки плюс.

Пример.

1)

2) ,

3) .
III. ЗАПИСЬ РЕЗУЛЬТАТА КОСВЕННОГО ИЗМЕРЕНИЯ.
При записи результата косвенного измерения необходимо соблюдать следующие правила:

1. Величину абсолютной погрешности необходимо округлить до двух зна­чащих цифр, если первая из них единица, и до одной во всех остальных случаях (значащими цифрами называются все цифры, кроме нулей, стоящие впереди числа слева). Нули в середине числа и в конце являются значащими. Например, в числе 0.0305 три значащие цифры, в числе 5100  четыре значащие цифры.
Пример. Если при определении объема цилиндра V абсолютная ошибка оказалась рав­ной , ее следует округлить до двух значащих цифр: . Если , ее следует округлить до одной значащей цифры .


  1. Среднее значение измеряемой величины следует записать таким образом, чтобы результат заканчивался в том же разряде, что и абсолютная погрешность.

Пример. Если объем цилиндра при расчете по формуле получается равным , а абсолютная ошибка после округления равна , то объем следует записать также только до десятых

Окончательный результат записывается в виде: .

Такая запись показывает, в каких пределах содержится истинное значение измеряемой величины.

В случае нашего примера для объема цилиндра окончательный результат записывается следующим образом: .

Такая запись указывает, что истинный результат лежит в пределах:

.

7

ПРИМЕР ОБРАБОТКИ РЕЗУЛЬТАТОВ КОСВЕННЫХ ИЗМЕРЕНИЙ.
При определении ускорения свободного падения g с помощью математи­ческого маятника используется расчетная формула:

,

где l  длина математического маятника, измеряемая миллиметровой линейкой, n - число колебаний маятника, t - время десяти колебаний маятника, определяемое секундомером. После прямых измерений времени и длины получаем следующие данные:
t = 14.72с, 14.74с, 14.75с, 14.73с, 14.76; n = 10;

l= 54.2 см ±0.05 см = (54.2 ±0.05)10-2 м
1) Результаты измерений заносим в таблицу

Результаты измерений и расчетов. Таблица.




, с


, с

l, м


Δl, м


1

2345


14.72

14.74

14.77

14.76

14.71



0.02

0

0.03

0.02

0.03


54.210-2


0.0510-2





=14.74


0,02




=(14.74±0.02) с


= (54,20 + 0,05)10-2 м


g =(9.84 ±0.05) м/с2, = 0.005


2) Определяем погрешности при прямых измерениях:




t = (14.74±0.02) c.

8
б) Так как измерения длины производились один раз, в качестве абсолютной погрешности берем погрешность инструмента (линейки), т.е. половину деления ее шкалы



3) Определяем относительную погрешность при косвенном измерении g:

а) берем натуральный логарифм от выражения:

б) выполняем дифференцирование

в) знак d заменяем на знак

,

г) знак минус перед знаком заменяем на знак плюс

.

Число Если ограничиться значением , то

относительная погрешность и
.


  1. Запись окончательного результата. Находим среднее значение ускорения свободного падения



.

Найдем абсолютную погрешность: . Округляем полученный результат до одной значащей цифры . Записываем окончательный результат:

.

9

КОНТРОЛЬНЫЕ ВОПРОСЫ





  1. Какие измерения называются прямыми а какие косвенными?

2) Как определяется абсолютная погрешность при прямых измерениях? Как рассчитывается относительная погрешность?

3) Как определить относительную ошибку косвенного измерения?

Как можно определить абсолютную ошибку при косвенном измерении?

4) Как записать окончательный результат измерения.

РЕКОМЕНДАЦИИ ПРИ ПОСТРОЕНИИ ГРАФИКОВ


В некоторых лабораторных работах зависимость между изучаемыми величинами изображается графически. Обыкновенно пользуются прямоугольной системой координат. Значение аргумента откладывается по оси X, значение функции по оси Y. Около каждой оси нужно написать обозначение изобража­емой величины и указать, в каких единицах она измеряется. Для правильного построения графика важным является выбор масштаба. Рекомендуется руко­водствоваться следующими соображениями:

1) Масштаб по каждой оси может быть свой. Равномерно через 10-20 мм откладывают масштабные деления на координатных осях, причем пределы из­менений обеих величин должны ограничивать на осях отрезки примерно одина­ковые по величине, иначе график может оказаться очень сжатым по одной из осей и неудобным для пользования.

2) При построении графика следует полностью использовать всю площадь чертежа. Если первое значение измеряемой величины сильно отличается от нуля, отсчет в начале координат нужно начать не от нуля, а от значения, близкого к первому значению измеряемой величины.

3) На график наносят точки по полученным из эксперимента данным. Через них проводят прямую или плавную кривую линию. Так как все измерения сде­ланы с той или иной ошибкой, то может иметь место некоторый разброс точек (они не укладываются точно на одной кривой). В этом случае линию нужно про­водить между точками так, чтобы возможно большее число точек легло на эту линию, а остальные распределились примерно равномерно по обе стороны кри­вой на одинаковом от нее расстоянии.

Используя график, можно в пре­делах произведенных наблюдений интерполировать, то есть на­ходить значение величины Y для тех значении Х, которые непосредствен­но не наблюдались. Для этого из лю­бой точки оси абсцисс можно провес­ти ординату до пересечения с кривой. Длина такой ординаты будет пред­ставлять значение величины Y, соот­ветствующее значению величины X.
10

ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ ТВЕРДЫХ ТЕЛ



Цель работы: экспериментально определить плотность твердого тела цилиндрической формы и ознакомиться с ме­тодом обработки результатов измерений.

ВВЕДЕНИЕ


Плотностью однородного тела называется величина равная отно­шению массы тела к его объему (1).

Объем цилиндра , где D  диаметр цилиндра,

H  его высота. Поэтому плотность тела цилиндрической формы определяется по формуле (2)

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ


1. Измерить диаметр D и высоту Н цилиндра 5 раз. Резуль­таты измерений занести в таблицу 1.

Таблица 1.

Номер цилиндра № ____





m ± m= кг

N





, м


, м

, м


, м


1.

2.

3.

4.

5.







м

м

кг/м3


ερ =

кг/м3


2. Занести в таблицу указанный на цилиндре номер, его массу m и абсолютную погрешность m.

11

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ



1. По результатам измерений диаметра D и высоты H определить их среднее арифметическое значение: и

­2. Определить случайные ошибки для величин D и H

и

  1. Определить систематическую (приборную) погрешность штангенциркуля

(), которая равна половине точности нониуса.
4. Абсолютную погрешность в определении диаметра и высоты цилиндра найти по формулам



  1. Определить среднее значение плотности цилиндра по формуле



6. Относительную ошибку в определении плотности вычислить по формуле


7. Абсолютную ошибку определить по формуле

8. Окончательный результат записать в виде:

9. Результаты вычислений занести в таблицу 1.

Похожие:

Лабораторная работа 01 определение плотности твердых тел москва 2005 г. Лабораторная работа 101 iconЛабораторная работа 08 Изучение дифракции рентгеновских лучей на кристаллах Москва 2005 г. 1 лабораторная работа 08
Цель работы: определение расстояний между атомными плоскостями в кристалле по имеющейся рентгенограмме
Лабораторная работа 01 определение плотности твердых тел москва 2005 г. Лабораторная работа 101 iconЛабораторная работа №1 Работа в Oracle Database Express Edition 1 Лабораторная работа №6
Лабораторная работа Выполнение расчетов с использованием программирования в среде Visual Basic for Applications
Лабораторная работа 01 определение плотности твердых тел москва 2005 г. Лабораторная работа 101 iconЛабораторная работа 09 изучение прецессии гироскопа москва 2005 г. Лабораторная работа n 109
На рис. 1 изображен гироскоп, вращаю­щийся с угловой скоростью вокруг вертикальной оси симметрии. Угловая скорость и момент импульса...
Лабораторная работа 01 определение плотности твердых тел москва 2005 г. Лабораторная работа 101 iconЛабораторная работа №3. Знакомство с прерываниями. Лабораторная работа №4. Программная обработка клавиатуры
Лабораторная работа №1. Знакомство с общим устройством и функционированием ЭВМ. Изучение структуры процессора, организации памяти,...
Лабораторная работа 01 определение плотности твердых тел москва 2005 г. Лабораторная работа 101 iconЛабораторная работа по курсу «Физические основы микроэлектроники» Нижний Новгород, 2005
Операционный усилитель: Лабораторная работа по курсу «Микроэлектроника» / Сост. Н. В. Федосеева, С. М. Планкина. – Н. Новгород, ннгу,...
Лабораторная работа 01 определение плотности твердых тел москва 2005 г. Лабораторная работа 101 iconЛабораторная работа по физике радиоматериалов определение удельных Электрических сопротивлений твердых диэлектриков
На испытуемом плоском образце ио с толщиной h расположены высоковольтный вэ, измерительный иэ и охранный оэ электроды
Лабораторная работа 01 определение плотности твердых тел москва 2005 г. Лабораторная работа 101 iconЛабораторная работа по теме: «ms doc. Основные команды.»
Мбоу «сош №8 г. Петровска Саратовской области» Лабораторная работа в среде ms dos
Лабораторная работа 01 определение плотности твердых тел москва 2005 г. Лабораторная работа 101 iconЛабораторная работа №1 исследование прямолинейного движения тел на машине атвуда
...
Лабораторная работа 01 определение плотности твердых тел москва 2005 г. Лабораторная работа 101 iconЛабораторная работа №5 «Определение плотности вещества твердого тела» Цель: научить определять плотность вещества
Организационный момент (сообщение темы урока, плана занятия, запись домашнего задания)(2 мин)
Лабораторная работа 01 определение плотности твердых тел москва 2005 г. Лабораторная работа 101 iconЛабораторная работа 06 определение ускорения свободного падения и момента инерции физического маятника москва 2005 г
Цель работы: экспериментальное определение ускорения свобод­ного падения и момента инерции физического ма­ятника с использованием...
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org