Оценка погрешностей результатов измерений Погрешности измерений и их типы



Скачать 158.31 Kb.
Дата06.05.2013
Размер158.31 Kb.
ТипДокументы
Оценка погрешностей результатов измерений


  1. Погрешности измерений и их типы


Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т.д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т.е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от с до с. Таким образом, измеряемая величина всегда содержит в себе некоторую погрешность , где и X – соответственно истинное и измеренное значения исследуемой величины. Величина называется абсолютной погрешностью (ошибкой) измерения, а выражение , характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т.д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.


Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т.д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т.п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.
2. Оценка систематической (приборной) погрешности
При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙103 кг/м3, то абсолютная погрешность в этом случае равна кг/м3.

Некоторые особенности в расчете приборных погрешностей электроизмерительных приборов будут рассмотрены ниже.

При определении систематической (приборной) погрешности косвенных измерений функциональной величины используется формула

, (1)

где - приборные ошибки прямых измерений величины , - частные производные функции по переменной .

В качестве примера, получим формулу для расчета систематической погрешности при измерении объема цилиндра. Формула вычисления объема цилиндра имеет вид

.

Частные производные по переменным d и h будут равны

, .

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с (2. ..) имеет следующий вид

,

где и приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность
Д


Рис. 1
ля подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса), выведенный из следующих эмпирических положений.

  1. погрешности измерений могут принимать непрерывный ряд значений;

  2. при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

  3. чем больше величина случайной погрешности, тем меньше вероятность ее появления.

График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

, (2)

где - функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки , σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где - результат i-го измерения; - среднее арифметическое полученных значений; n – число измерений.

Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде .

Интервал значений от до , в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента, дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

. (4)

Распределение вероятностей этой величины не зависит от σ2, а существенно зависит от числа опытов n. С увеличением числа опытов nраспределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n, и столбца, соответствующего доверительной вероятности α

Таблица 1.

n

α

n

α

0,8

0,9

0,95

0,98

0,8

0,9

0,95

0,98

3

1,9

2,9

4,3

7,0

6

1,5

2,0

2,6

3,4

4

1,6

2,4

3,2

4,5

7

1,4

1,9

2,4

3,1

5

1,5

2,1

2,8

3,7

8

1,4

1,9

2,4

3,9


Пользуясь данными таблицы, можно:

  1. определить доверительный интервал, задаваясь определенной вероятностью;

  2. выбрать доверительный интервал и определить доверительную вероятность.

При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

. (5)

Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

Оценка суммарной погрешности измерений. Запись окончательного результата.

Суммарную погрешность результата измерений величины Х будем определять как среднее квадратичное значение систематической и случайной погрешностей

, (6)

где δх – приборная погрешность, Δх – случайная погрешность.

В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

Окончательный результат измерений рекомендуется представлять в следующем виде

, α=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх= 0,042, то отбрасываем 2 и пишем Δх=0,04, а если Δх=0,123, то пишем Δх=0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

4. Методика расчета погрешностей измерений.

Погрешности прямых измерений
При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

  1. Проводятся измерения заданного физического параметра n раз в одинаковых условиях, и результаты записываются в таблицу.

  2. Если результаты некоторых измерений резко отличаются по своему значению от остальных измерений, то они как промахи отбрасываются, если после проверки не подтверждаются.

  3. Вычисляется среднее арифметическое из n одинаковых измерений. Оно принимается за наиболее вероятное значение измеряемой величины

. (8)

  1. Находятся абсолютные погрешности отдельных измерений

  2. Вычисляются квадраты абсолютных погрешностей отдельных измерений (Δхi)2

  3. Определяется средняя квадратичная ошибка среднего арифметического

.

  1. Задается значение доверительной вероятности α. В лабораториях практикума принято задавать α=0,95.

  2. Находится коэффициент Стьюдента для заданной доверительной вероятности α и числа произведенных измерений (см.табл.)

  3. Определяется случайная погрешность

.

  1. Определяется суммарная погрешность

.

  1. Оценивается относительная погрешность результата измерений

.

  1. Записывается окончательный результат в виде

, с α=… Е=…%.
5. Погрешность косвенных измерений
При оценке истинного значения косвенно измеряемой величины , являющейся функцией других независимых величин , можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется , а затем определяется среднее арифметическое из всех значений yi

. (9)

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений. В этом случае величина рассчитывается по средним значениям . В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y. Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

. (10)

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y. Задание доверительной вероятности α, нахождение коэффициента Стьюдента , определение случайной и суммарной ошибок осуществляются так же, как и в случае прямых измерений. Аналогичным образом представляется результат всех расчетов в виде

, с α=… Е=…%.

6. Пример оформления лабораторной работы
Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.
Порядок выполнения работы

Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

Расчетная формула для вычисления объема цилиндра

,

где d – диаметр цилиндра; h – высота.
Результаты измерений

Таблица 2.

№ измерения

d,

мм

мм

мм2

h,

мм

, мм

, мм2

1

50,15

0

0

12,32

0,05

0,025

2

50,10

0,05

0,025

12,34

0,03

0,09

3

50,20

0,05

0,025

12,41

0,04

0,016

4

50,25

0,10

0,0100

12,36

0,01

0,01

5

50,05

0,10

0,0100

12,42

0,05

0,025

Ср.

50,150














1. Вычисление среднего значения искомой величины. По вычисленным средним значениям диаметра и высоты цилиндра определим среднее значение объема цилиндра



Оценка погрешностей измерения

2.Вычисление систематической (приборной) погрешности

Приборные погрешности прямых измерений

,

Систематическая погрешность при измерении объема

; .
3. Вычисление случайной погрешности. Средне квадратичные погрешности среднего арифметического

; ;

, .

Средняя квадратичная ошибка среднего арифметического значения

;

Доверительная вероятность

Коэффициент Стьюдента

Случайные погрешности прямых измерений

; ,

; .

Случайная погрешность объема цилиндра

; .

4. Вычисление суммарной погрешности

Абсолютная погрешность

; .

5. Относительная погрешность, или точность измерений

; Е = 0,5%.

6. Запись окончательного результата

Окончательный результат для исследуемой величины записывается в виде

, Е = 0,5%.
Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.
6. Графическое представление результатов измерений
Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

г) дают возможность определять некоторые величины или проводить графическое дифференцирование, интегрирование, решение уравнения и др.
Общие рекомендации по построению графиков
Г


Рис.2
рафики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т.е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.




Рис.3
Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.




Рис.4
При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).

Похожие:

Оценка погрешностей результатов измерений Погрешности измерений и их типы iconЛекция Погрешности измерений. Тема погрешности измерений. Классификация погрешностей измерений
Систематические погрешности – погрешности постоянные или изменяющиеся по определенному закону в зависимости от вызывающих их причин....
Оценка погрешностей результатов измерений Погрешности измерений и их типы iconОценка погрешностей измерений при выполнении лабораторных работ по физике
Погрешности возникают при любых измерениях, и только правильная оценка погрешностей проведенных измерений и расчетов позволяет выяснить...
Оценка погрешностей результатов измерений Погрешности измерений и их типы iconЛекция Погрешности измерений и их классификация. Систематические погрешности
Достоверность (или точность) измерений характеризует степень доверия к полученным результатам измерений. Это позволяет для каждого...
Оценка погрешностей результатов измерений Погрешности измерений и их типы iconЛабораторная работа №3 Погрешности результатов косвенных измерений студент группы 816151 Низамов И. А. Проверила
...
Оценка погрешностей результатов измерений Погрешности измерений и их типы iconОценка погрешностей косвенных измерений
Цель работы: на практическом примере научиться проводить косвенные измерения и оценивать их погрешности
Оценка погрешностей результатов измерений Погрешности измерений и их типы iconЛабораторная работа № М1 Оценка результатов нескольких серий измерений Методические указания Тула 2012г
Такие результаты говорят о наличии в них случайных погрешностей, то есть погрешностей, изменяющихся хаотически, непредсказуемо
Оценка погрешностей результатов измерений Погрешности измерений и их типы iconЛабораторная работа 01 определение плотности твердых тел москва 2005 г. Лабораторная работа 101
Существуют методы анализа и учета влияния различных погрешностей на результаты измерений. Все погрешности (ошибки) измерений принято...
Оценка погрешностей результатов измерений Погрешности измерений и их типы iconПогрешности измерений
Задачей экспериментатора является не только нахождение самой величины, но и оценка допущенной при измерении погрешности. В зависимости...
Оценка погрешностей результатов измерений Погрешности измерений и их типы iconВ. Н. Бриш А. Н. Сигов выбор универсальных средств измерения линейных размеров
Гси (Государственной системы обеспечения единства измерений). Указаны погрешности измерений, пределы измерений, цена деления приборов...
Оценка погрешностей результатов измерений Погрешности измерений и их типы iconЛабораторная работа №10 определение объема и плотности твердого тела и погрешностей их измерений
Цель работы: изучить способы расчета погрешностей измерения физических величин; определить опытным путем объем и плотность твердого...
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org