Квадратичные формы и их применения



Скачать 91.98 Kb.
Дата14.05.2013
Размер91.98 Kb.
ТипДокументы
КВАДРАТИЧНЫЕ ФОРМЫ И ИХ ПРИМЕНЕНИЯ
Определение. Квадратичной формой переменных ,принимающих числовые значения , называется числовая функция вида

,

где - числа, называемые коэффициентами квадратичной формы.

Определение. Матрицей квадратичной формы переменных , называется симметрическая матрица порядка , элементы главной диагонали которой совпадают с коэффициентами при квадратах переменных, а каждый недиагональный элемент, расположенный в ой строке ом столбце, равен половине коэфициента при в квадратичной форме.

Определение. Рангом квадратичной формы называется ранг её матри-цы. Квадратичная форма может быть записана в матричном виде где матрица квадратичной формы и .

Определение. Квадратичная форма называется канонической (имеет канонический вид), если коэфициенты при , то есть, если матрица квадратичной формы диагональная и следовательно

.,

где не все коэффициенты равны нулю.

Теорема (Лагранжа). Для всякой квадратичной формы существует такой базис, в котором квадратичная форма имеет канонический вид.

Определение.
Нормальным видом квадратичной формы называется такой канонический вид, в котором коэффициенты при квадратах неизвестных (не считая нулевых) равны .

Определение. Квадратичная форма называется положительно

(отрицательно) определённой, если при всех

108

и положительно (отрицательно) полуопределённой,если при всех .

Теорема (критерий Сильвестра). Для того чтобы квадратичная форма была положительно определённой, необходимо и достаточно чтобы все угловые миноры матрицы квадратичной формы были положительны,то есть, чтобы



Здесь -угловые миноры матрицы квадратичной формы.

Следствие. Для того чтобы квадратичная форма была отрицательно определённой, необходимо и достаточно, чтобы знаки угловых миноров матрицы квадратичной формы чередовались следующим образом:

Примеры


1. Привести квадратичную форму к каноническому виду методом Лагранжа и записать соответствующее преобразование

.

Решение. Следуя алгоритму метода Лагранжа, выделим вначале в квад-ратичной форме все члены, содержащие , и дополним их до полного квадрата:

.

Сделаем в этом выражении замену и подставим его в квадратичную форму. Получим:

.

Далее выделим в члены, содержащие и проделаем с ними анало-гичную процедуру:



Если положить , то квадратичная форма уже не будет содержать смешанных произведений. Примем также , тогда

109

канонический вид квадратичной формы есть

.

Соответствующее преобразование от переменных к переменным имеет вид:

.

2. Найти ортогональное преобразование, приводящее квадратичную форму к каноническому виду, и записать соответствующий канонический вид этой формы:

.

Решение. В исходном базисе матрица оператора, соответствующая данной квадратичной форме, есть

.

Эта матрица будет определять квадратичную форму канонического вида в ортонормированном базисе , составленном из собственных векторов матрицы . Найдем их.

Характеристическое уравнение для матрицы имеет вид

.

Откуда следует

и .

Как известно собственные векторы матрицы находятся из уравнений

.

Для случая имеем:

.

110

Ранг матрицы этой системы уравнений (относительно ) равен 1. Следовательно, ФСР системы состоит из двух линейно независимых решений.

Как видно из данной системы, величина принимает произвольные значения, а величины связаны соотношением . В качестве собственных можно выбрать, например, векторы



Эти векторы ортогональны: (если бы они оказались не ортогональными, то их нужно было бы ортогонализировать с помощью стандартной процедуры). Вектор к тому же и нормирован. Откуда следует - . Нормируем теперь вектор:

.

Для случая уравнение, определяющее собственный вектор есть

.

Ранг матрицы этой системы уравнений равен 2. Следовательно она имеет одно линейно независимое решение, например, Отнормируем этот вектор: .

Теперь можно составить искомую матрицу ортогонального преобразования:

.

111

Исходная квадратичная форма будет иметь следующий канонический вид

.

При этом переменные связаны с переменными соотношением

или


3. Построить в прямоугольной системе координат фигуру, определяемую следующим уравнением, предварительно приведя его к каноническому виду

.

Решение. Выделим в этом выражении квадратичную форму . Это три первых слагаемых уравнения .

Матрица квадратичной формы равна . Проведём процедуру приведения квадратичной формы к каноническому виду с помощью ортогонального преобразования. Характеристическое уравнение матрицы имеет вид

.

Его корни таковы: .

Найдём теперь собственные векторы, соответствующие этим корням и отнормрируем их. Для вектора , соответствующего

, имеем
112



В итоге собственный вектор, соответствующий , можно выбрать в виде

.

Анологичная процедура для собственного вектора даёт:

Откуда:

.

После нормировки полученных векторов имеем:

.

Эти векторы представляют собой ортонормированный базис новой системы координат. Матрица ортогонального оператора, приводящего квадратичную форму к каноническому виду , есть



Связь старых и новых координат определяется соотношением .

Учитывая приведенные выражения, приведём заданную квадратичную форму к каноническому виду
113

Это есть каноническое уравнение эллипса в системе координат ,которая получается из исходной её поворотом на угол и переносом начала координат в точку .

Задачи


Записать матрицу квадратичной формы:

5.1. ;

5.2. ;

5.3. ;

5.4. ;

5.5. ;

5.6. ;

5.7. ;

5.8. ;

5.9. ;

5.10. ;

5.11. .

Найти ранг квадратичной формы:

5.12. ;

5.13. ;

5.14. ;

114

5.15. ;

5.16. ;

5.17. ;

5.18. ;

5.19. ;

5.20. .

Записать квадратичную форму в матричном виде:

5.21. ;

5.22. ;

5.23. ;

5.24. ;

5.25. ;

5.26. ;

5.27. ;

5.28. ;

5.29. ;

5.30. .

Записать квадратичную форму в виде по заданной

матрице :

5.31. ; 5.32. ;

5.33. ; 5.34. ;

115

5.35. ; 5.36. ;

5.37. ; 5.38. ;

5.39. ; 5.40. .

Привести квадратичную форму к каноническому виду методом

Лагранжа и записать соответствующее преобразование:

5.41. ;

5.42. ;

5.43. ;

5.44. ;

5.45. ;

5.46. ;

5.47.

5.48.

5.49.

5.50.

5.51. ;

116

5.52. .

Найти ортогональное преобразование, приводящее квадратичную

форму к каноническому виду и записать соответствующий кано-

нический вид квадратичной формы:

5.53. ;

5.54. ;

5.55. ;

5.56. ;

5.57. ;

5.58. ;

5.59. ;

5.60. ;

5.61. ;

5.62. .

Записать данное уравнение второго порядка в матричном виде и

определить, фигуру какого типа (эллиптического, гиперболическо-

го, параболического) оно определяет:

5.63.

5.64.

5.65.

5.66.

5.67.

5.68.

5.69.

5.70.

5.71.

5.72.

117

5.73.

5.74. .

Построить в прямоугольной системе координат Оху (O;i,j) фигуру,

определяемую данным уравне-нием, предварительно приведя его

к каноническому виду:

5.75.

5.76.

5.77.

5.78.

5.79.

5.80.

5.81.

5.82.

5.83.

5.84. .

Каждую из квадратичных форм исследовать на знакоопределённость

5.85.

5.86.

5.87.

5.88.

5.89.

5.90.

5.91.

5.92.

5.93. ;

5.94.
118

5.95. ;

5.96. .

119

Похожие:

Квадратичные формы и их применения icon01. 01. 06 «Математическая логика, алгебра и теория чисел» содержание вступительного экзамена
Пространства и формы: размерность и базис, двойственное пространство, билинейные и квадратичные формы
Квадратичные формы и их применения iconКвадратичные формы 2
Число отрицательных квадратов называется отрицательным индексом инерции. Разность между положительным и отрицательным индексами инерции...
Квадратичные формы и их применения iconКвадратичные вычеты. Пусть р- простое, а < р, р Определение 1
Пример Пусть р = 7, тогда 1, 2, 4 – квадратичные вычеты, а 3, 5, 6 – не квадратичные вычеты
Квадратичные формы и их применения iconЗадачи к зачету и проверочным работам (§5)
Вычислить первые квадратичные формы и углы между координатными линиями следующих поверхностей
Квадратичные формы и их применения iconКвадратичные формы
В рассмотренных примерах мы имеем дело с функцией, которая в общем виде зависит от «n» переменных и задается определенной формулой,...
Квадратичные формы и их применения iconЛинейные операторы и квадратичные формы
Определение Отображение L из линейного пространства в линейное пространство называется линейным отображением, или линейным оператором,...
Квадратичные формы и их применения iconКвадратичные формы
Квадратичной формой f от п переменных х1,х2,…, хп называется сумма, каждый член которой является или квадратом одной из этих переменных,...
Квадратичные формы и их применения iconСуммы гаусса и их приложения
Двучленные сравнения по простому модулю. Степенные вычеты. Квадратичные вычеты, символ Лежандра
Квадратичные формы и их применения iconО синергетике, редукции и эвристике
Ценностные формы освоения реальности (нравственность, искусство, религия), дополняют науку так же, как сердце дополняет разум. В...
Квадратичные формы и их применения iconПрограмма курса «Алгебра и геометрия»
Определение билинейной формы; примеры. Представление билинейной формы в базисе, ее матрица, их соответствие. (Косо)симметричные билинейные...
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org