Алгоритмы в математике



Дата03.06.2013
Размер36.1 Kb.
ТипПлан урока
Муниципальное общеобразовательное учреждение

«Заинская общеобразовательная школа №2»

Урок информатики в 4 классе А



Педагог: учитель начальных классов

1 квалификационной категории,

Любавина Лариса Анатольевна
Тема: Алгоритмы в математике
Цели: 1)продолжить знакомство с историей развития вычислительной техники; познакомить с алгоритмами в математике ;2) развивать логическое и алгоритмическое мышление ; формировать умение анализировать и делать выводы; 3) воспитывать интерес к уроку информатики.

План урока


1. Организационный момент.

2. Сообщение темы и цели урока.

3.Разминка.

Первую счётную машину, которая называлась арифмотр, изобрёл в XVII веке замечательный французский учёный Паскаль. Она выполняла любые арифметические операции. Умножение в ней осуществлялось многократным сложением, деление – многократным вычитанием. Машина производила на современников неизгладимое впечатление.

Однако жизнь ставила всё новые , более сложные задачи. Астрономия и экономика государства, мореплавание и наука, строительство мостов, дворцов и туннелей, обработка результатов переписи населения. Если бы пришлось решать все эти задачи на арифмометрах, для этой работы не хватило людей на всей планете.
4. Работа с алгоритмами.

Алгоритм Гаусса.

Великий немецкий математик Карл Гаусс (1777-855) придумал алгоритм быстрого сложения чисел от 1 до 100.

1 2 3 4 5 6 7 8 …49 50 51 52 …94 95 96 97 98 99 100


  • Подсчитать количество пар чисел в последовательности от 1 до 100 (50)

  • Сложить первое и последнее числа (1+!00)

  • Умножить количество полученных пар чисел на получившуюся сумму (5050)

- Сколько пар чисел в последовательности от 1 до 100 ? Сумма чисел от 1 до 100.

Алгоритмы, используемые для построения числового ряда.

Чтобы найти алгоритм для построения числового ряда, нужно проанализировать последовательность чисел и догадаться, каким образом из первого числа может быть получено второе, из второго третье и т.д.

- Действия алгоритма будем записывать в прямоугольниках.

Например, дан ряд чисел : 3 6 9 12 ………

Проанализируем эту последовательность : (6-3=3, 9-6=3, 12-9=3)

Следовательно, действия алгоритма состоят в том , что каждое следующее число получается путём увеличения предыдущего числа на 3.

- Запишем алгоритм :


+3

+3

+3

+3
3 6 9 12 ...


Алгоритм составления магических квадратов (3 х3).

Магические квадраты – это такие квадраты, в которых сумма чисел в любом направлении равна одному и тому же числу.
Чтобы составить такой квадрат, надо действовать по следующему алгоритму:


  • Подобрать 9 таких чисел, чтобы разность между соседними числами была равна постоянному числу . (Например: 1, 3, 5, 7, 9, 11, 13, 15, 17)

  • В этом ряду подчеркнуть вторую тройку чисел. (7, 9,11)

  • Сложить эти числа (получается сумма магического квадрата): 7+9+11=27

  • Расположить эту строку чисел по любой диагонали в квадрате.

  • Рядом с наименьшим числом (7) расположить самое большое число в ряду (17). Самое меньшее число ряда (1) поместить с самым большим из трёх подчёркнутых чисел (11).

  • Заполнить весь квадрат, произведя следующие вычисления:

  • сложить в ряду или столбце уже имеющиеся два числа;

  • из суммы магического квадрата вычесть получившее число;

  • записать полученное число;

  • записать полученное число в клеточку.

7+17=24 27-24=3

11+3=14 27-14=13

9+13=22 27-22=5

7+5=12 27-12=15

15+11=26 27-26=1


7

17

3

5

9

13

15

1

11



5. Физминутка.
6. Работа в тетради.

1) Выпиши все числа от 1 до 20. Пользуясь алгоритмом Гаусса, найди сумму этих чисел. Запиши получившееся число. (210)

2) Продолжи ряды, записывая действия алгоритма в квадратиках:

* 6 13 20 27 34 ?

* 2 6 3 7 4 ?

*41 37 39 35 37 ?

*2 5 15 18 54 ?

3) Заполни магический квадрат для ряда чисел:

2 5 8 11 14 17 20 23 26

11

26

5

8

14

20

23

2

17


7.Закрепление.

Задание:

Все рисунки собраны из фигур мозаики по одному алгоритму с помощью разных слов-актёров.

-Соедини стрелками «актёров» с рисунками:

Слева Справа: -кораблик

1 – прямоугольник - домик

2 – трапеция - конфета

3 – прямоугольник - ёлочка
Домашнее задание

1. Найди сумму всех чисел от 4 до 13, используя алгоритм Гаусса . (85)

2. Составь свой магический квадрат , действуя по алгоритму составления магических квадратов.

Итог урока

Похожие:

Алгоритмы в математике iconЗанятие I тема. Разветвляющиеся алгоритмы. Оператор условия If
До сих пор Вы использовали линейные алгоритмы, т е алгоритмы, в которых все этапы решения задачи выполняются строго последовательно....
Алгоритмы в математике iconНестандартные алгоритмы счёта (Научно-исследовательская работа)
Цель: изучить нестандартные приемы вычислений и экспериментальным путем выявить причину отказа от использования этих способов при...
Алгоритмы в математике icon«Подготовка к контрольной работе по теме: «Разветвляющиеся и циклические алгоритмы. Алгоритмы с параметрами.»
Закрепить представление о построчной записи ветвлений и циклов в алгоритмах, об использовании параметров
Алгоритмы в математике iconАлгоритмы и программирование Урок 1 Понятие алгоритма. Линейные алгоритмы
Алгоритмом называется последовательность команд, понятных исполнителю, приводящая к результату за конечное количество шагов
Алгоритмы в математике iconБыстрые алгоритмы и метод бве
Область вычислительной математики, которая называется быстрые алгоритмы, появилась в 1960 году
Алгоритмы в математике iconМетоды и алгоритмы решения прямых и обратных задач математической геофизики в кусочно-однородных средах
Алгоритмы допускают распараллеливание и могут быть реализованы на вычислительных кластерах и многопроцессорных комплексах
Алгоритмы в математике iconПдс-алгоритмы и труднорешаемые задачи комбинаторной оптимизации
В главах 1–3 приведены эффективные пдс-алгоритмы решения трех задач календарного планирования
Алгоритмы в математике iconЛитература 32 Приложение а 33 Задание
Определить основные алгоритмы распознавания образов, выявить свойства и характеристики, а так же этапы работ. Алгоритмы реализовать...
Алгоритмы в математике iconМножества, отображения, логика
Это относится и к математике, которая имеет: содержание (что?), цель (для чего?) и технологию исследований (как?). Под содержанием...
Алгоритмы в математике iconВеличиной называется отдельный информационный объект (число, символ, строка, таблица и пр.) Величины в программировании, как и в математике, делятся на переменные
Величины: константы, переменные, типы величин, Присваивание, ввод и вывод величин. Линейные алгоритмы работы с величинами
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org