Нуклеиновые кислоты. Виды, строение, структуры, роль



страница1/4
Дата21.07.2013
Размер0.49 Mb.
ТипЛекция
  1   2   3   4
ЛЕКЦИЯ

НУКЛЕИНОВЫЕ КИСЛОТЫ. ВИДЫ, СТРОЕНИЕ, СТРУКТУРЫ, РОЛЬ

План:

  1. ДНК, строение и роль

  2. РНК, виды, строение и роль


Нуклеиновые кислоты (НК) – простетическая группа нуклеопротеидов (НП). НК открыты еще в 70-х годах XIX столетия (Фишер), но строение, локализация и роль установлены только в середине XХ века. Известно 2 вида НК – ДНК и РНК, которые различаются составом молекулы, локализацией в клетке и функцией в организме.

ДНК, строение и роль

Открытие ее структуры является значительным событием, что привело к возникновению новой отрасли биохимии – молекулярной биологии. В больших количествах ДНК образуется и содержится в ядрах клеток, причем количество молекул и их размеры зависят от вида организма. Например, в ядре клеток млекопитающих этих молекул много и они распределены по 46 хромосомам. Локализация ДНК в хромосомах была впервые установлена Фельгеном в 1924 году с помощью реакции Шиффа. Получены экспериментальные доказательства наличия ДНК в митохондриях (около 1-2% от суммарной ДНК клеток). Установлено, что эта ДНК кодирует синтез некоторых структурных белков митохондрий и особых митохондриальных РНК. В других местах ДНК может быть при вирусной инфекции, в яйцеклетках некоторых животных, в базальных тельцах (кинетопластах жгутиковых). Чем сложнее организм, тем большую массу имеет ДНК его клеток. Количество ДНК в клетке зависит от функции и обычно составляет 1-10%. Больше всего ДНК в половых клетках (60%), меньше (0,2%) в миоцитах. В хромосомах высших организмов ДНК связаны с простыми белками – гистонами, альбуминами и другими, образуя дезоксирибонуклеопротеид (ДНП). Такая большая молекула обычно нестойка и, чтобы сохранить ее целостность и неизменность, в процессе эволюции создана репарирующая система, состоящая из ферментов – нуклеаз и лигаз, которые являются ответственными за «дежурный ремонт» молекулы, сшивая ее фрагменты в единое целое.

ДНК – это полимер, полинуклеотид, состоящий из большого количества (до млн) мононуклеотидов. Молекулярная масса 2х104 – 1х1011 Da. Мононуклеотиды ДНК содержат следующие азотистые основания - из производных пурина – аденин (А), гуанин (Г), из производных пиримидинов - цитозин (Ц) и тимин (Т). Помимо этих азотистых оснований, в составе ДНК животных и человека открыто минорное пиримидиновое основание - 5-метилцитозин. Азотистые основания связаны с дезоксирибозой и фосфорной кислотой.

В 1949 году Э. Чаргафф установил закономерности в количественном распределении азотистых оснований в молекуле ДНК. Эти закономерности названы правилами Чаргаффа (давать только для откр.лекции). Их 4: 1) число пуриновых оснований равно числу пиримидиновых: ∑А + Г = ∑Т + Ц; 2) количество остатков А равно количеству остатков Т, а Г равно Ц; 3) коэффициент специфичности Г+Ц/А+Т. . У человека оно равно 1,5, у быка 1,3, кишечной палочки 1,0.
4) количество аденина и цитозина равно количеству гуанина и тимина – А + Ц = Г + Т.

Структура ДНК установлена в 1953 году Уотсоном и Криком с помощью математических расчетов, модельных экспериментов и данных рентгеноструктурного анализа. За открытие структуры ДНК Уотсон и Крик в 1962 году были удостоены Нобелевской премии.

Согласно модели Уотсона и Крика, остатки дезоксирибоз и фосфатов расположены по хребту 2-х спиралеобразнозакрученных полинуклеотидных цепей, а плоскостные структуры пуриновых и пиримидиновых оснований расположены перпендикулярно оси цепи, образуя как бы ступени спиральной лестницы, причем А всегда соединен с Т двумя водородными связями, а Г с Ц тремя такими же связями. Это явление получило название правила (принципа) комплиментарности и избирательности.

Различают 4 уровня структурной организации ДНК:

Первичная структура – это спирально изогнутая полинуклеотидная цепь с определенным качественным и количественным набором мононуклеотидов, которые связаны 3’5’-фосфодиэфирной связью – формулу знать – см.Материалы С. 12, показать на табл или пленке. Т.о., каждая цепь имеет 5’конец (фосфатный) и 3’конец (дезоксирибоза). Участки ДНК, содержащие генетическую информацию, называются структурными генами.

Вторичная структура – это двухспиральная молекула, полинуклеотидные цепи которой антипараллельны и связаны водородными связями между комплементарными основаниями обоих цепей – показать на табл. или пленке. Один виток спирали равен 3,4 нм и содержит 10 нуклеотидных остатков. Вторичную структуру кроме водородных связей между комплементарными основаниями цепей, поддерживают также Ван-дер-Ваальсовы силы взаимодействия между основаниями одной цепи. Эти силы включают притягивающие и отталкивающие компоненты. Притягивающие включают взаимодействие между диполями, образованными кратковременными колебаниями электронов соседних атомов. Оттягивающие имеют место когда 2 атома подходят так близко, что их электронные орбитали перекрываются. Т.о., Ван-дер-Ваальсовы силы обусловлены взаимодействием электронов соседних атомов. Вторичную структуру также стабилизирует электростатическое взаимодействие между отрицательно заряженной нитью ДНК и положительно заряженными молекулами гистонов.

Третичная структура ДНК – это намотка ее цепей на гистоны, т.е. суперспирализация. Различают 5 видов гистонов: Н1, Н2А, Н2В, Н3, Н4. Гистоны Н2А и Н2В богаты лизином, а гистоны Н3 и Н4 богаты аргинином. 4 пары молекул этих белков (2Н2А, 2Н2В, 2Н3, 2Н4) образуют шаровидные утолщения - октамеры, на которые наматывается участок ДНК (140 пар оснований образуют 2 витка суперспирали). Образуется нуклеосома, это неактивная часть молекулы ДНК. Между нуклеосомами располагаются участки ДНК, неспирализованные, но они связаны с гистоном Н1. Это активная, т.е работающая часть ДНК. В процентном соотношении больше неактивной части (97%), а активной части ДНК всего 3%. В сборке нуклеосомы участвует особый ядерный белок – нуклеоплазмин. Это кислый (анионный) пентамерный белок, не связывающийся ни с ДНК, ни с хроматином, но способный обратимо соединяться с гистоновым октамером, блокируя способность гистонов к неспецифическому взаимодействию с ДНК. После завершения сборки нуклеосом нуклеоплазмин высвобождается из гистонового комплекса.

С гистонами возможны 3 типа химических реакций – ацетилирование, фосфорилирование и АДФ-рибозилирование. При этом гистоны становятся модифицированными. Ацетилирование гистонов Н3 и Н4 связано с активацией или инактивацией транскрипции гена; ацетилирование Н2А, Н2В, Н3 и Н4 гистонов связано со сборкой хромосом в ходе репликации ДНК; фосфорилирование гистонов Н1 связано с конденсацией хромосом в ходе репликативного цикла; АДФ-рибозилирование гистонов связано с репарацией ДНК.

Четвертичная структура – это укладка нуклеосом в хроматин, так что молекула ДНК длиной в несколько см складывается до 5 нм. Хроматин в химическом плане состоит на 2/3 из простых белков (гистонов – 55%, и негистоновых белков – альбуминов, глобулинов и ферментов – 45%) и 1/3 из ДНК. Хроматин содержит также 10% РНК. Ферменты хроматина участвуют в репликации (например, ДНК-топоизомеразы) и транскрипции (РНК-полимеразы).

В фазе покоя хроматин равномерно распределен по всему объему ядра и не обнаруживается обычными микроскопическими методами. В фазе деления клетки хроматин образует компактные частицы – хромосомы, которые видны в обычный микроскоп. Хроматин, содержащий активные гены, называется эухроматином (транскрипционно-активным). ДНК в активном хроматине содержит длинные участки (около 100000 пар оснований), чувствительные к действию нуклеаз, например, к ДНК-азе I. Внутри большой области активного хроматина обнаружены короткие участки (100-300 нуклеотидов) с еще более высокой чувствительностью к ДНК-азе I. Эти участки называются гиперчувствительными сайтами, или энхансерными элементами. Такие сайты обеспечивают доступность кодирующей цепи для белков, участвующих в процессе транскрипции. Транскрипционно-неактивный хроматин (гетерохроматин) плотно упакован. Существуют 2 типа гетерохроматина: конститутивный и факультативный. Конститутивный гетерохроматин всегда конденсирован и, следовательно, неактивен. Конститутивный гетерохроматин найден в областях, близких к цетромерам и к концевым участкам (теломерам) хромосом. Факультативный гетерохроматин временами конденсирован, а временами разуплотнен, активно транскрибируется, т.е. сходен с эухроматином.

В метафазе хромосомы состоят из 2-х сестринских хроматид, соединенных в центромере. Центромер является регионом, богатым А-Т. он связывает белков. образуемый комплекс называется кинетахор – это якорь для митотического веретена. Каждая сестринская хроматида содержит одну двухцепочечную молекулу ДНК. В интерфазе упаковка молекулы менее плотная, чем в метафазе. Метафазные хромосомы транскрипционно-неактивны.

ТЕЛОМЕРЫ И ТЕЛОМЕРАЗА


Теломеры представляют собой концы хромосом, которые у человека состоят из повторяющихся последовательностей 6 рядом стоящих мононуклеотидов ТТАГГГ. Эти последовательности складываются в форме ромашки. Теломеры не несут генетической информации, но они обеспечивают функциональную стабильность хромосом: защищают хромосомы от расщепления и предотвращают от слияния. Делящиеся соматические клетки при каждом делении теряют около 50-200 пар нуклеотидов в каждом клеточном цикле, а при потере 4000 пар нуклеотидов клетки лишаются способности делиться. При делении клетки длина теломер уменьшается и к старости теломер почти не остается.

В ряде клеток существует фермент, восстанавливающий длину теломер. Данный фермент называется теломераза (ДНК-нуклеотидилтрансфераза, КФ 2,7,7,31), за его открытие Томас Чех получил в 1989 году Нобелевскую премию. Это РНП, состоит из РНК (роль шаблона) и 2-х ПП, формирующих АЦ. Фермент функционирует как обратная транскриптаза – РНКДНКбелок. Он достраивает свободные 3-концы хромосом короткими повторяющимися последовательностями. В соматических клетках теломераза отсутствует. Активность этого фермента высока в зародышевых клетках, клетках опухолей. Чем выше активность теломеразы в опухолевых клетках, тем хуже прогноз и злокачественнее опухоль. Разрабатываются лекарственные препараты, ингибирующие теломеразу. Эти препараты в перспективе можно использовать при лечении теломеразо-позитивных опухолей. Благодаря высокой активности теломеразы клетки опухоли быстро и вечно делятся.

В связи с ролью теломеразы ученые пытаются решить и проблему старости и вечной жизни – найти препараты, активирующие теломеразу. Но при этом имеется опасность развития рака различной локализации.

Роль ДНК: 1) хранение и передача наследственной информации; 2) биосинтез ферментов, белков и гормонов.

РНК, виды, строение и роль

РНК – это полинуклеотиды, но состоят только из одной цепи, их мол.масса меньше, чем у ДНК. Кроме этого, они отличаются следующим: 1) количество РНК в клетке зависит от возраста, физиологического состояния, органной принадлежности клетки; 2) в мононуклеотидах РНК содержатся рибоза, вместо тимина урацил; 3) для РНК не характерны правила Чаргаффа; 4) в РНК больше минорных оснований, чем в ДНК, при этом в т-РНК количество минорных оснований приближается к 50. Все РНК синтезируются на ДНК, этот процесс называется транскрипцией.

В зависимости от локализации в клетке, функции различают 4 вида РНК: м-РНК (матричная, или информационная), транспортная – т-РНК, рибосомальная – р-РНК, малая ядерная РНК (мя-РНК). Каждый вид РНК имеет определенные представители: р-РНК включает 3 представителя (28S, 18S, 5.8S); м-РНК имеет больше всех представителей - 105; т-РНК представлена примерно 50 представителями; мя-РНК имеет около 10 представителей.

м-РНК

Открыта в 1961 году Жакобом и Мано. Она составляет всего 5% от общего количества РНК клетки. Эта РНК не имеет жесткой специфической структуры и ее полинуклеотидная цепь образует изогнутые петли. В нерабочем состоянии м-РНК собрана в складки, свернута в клубок, связана с белком; а во время функционирования цепь расправляется. Матричные РНК синтезируются на ДНК в ядре. Процесс называется транскрипция (списывание). Роль м-РНК – она несет информацию об аминокислотной последовательности (т.е. первичной структуры) синтезируемого белка. Место каждой аминокислоты в молекуле белка закодировано определенной последовательностью нуклеотидов в цепи м-РНК, т.е. в м-РНК имеются «кодовые слова» для каждой аминокислоты – триплеты, или кодоны, или генетические коды. Свойства генетического кода: 1) триплетность. Из 4-х возможных мононуклеотидов м-РНК (УМФ, ГМФ, АМФ, ЦМФ) можно построить по правилам перестановки 64 кодона. 61 кодон шифрует 20 аминокислот, а 3 кодона (УАА, УАГ, УГА) не кодируют ни одной аминокислоты. Они играют роль терминирующих (или «стоп-кодонов»), т.к. на них останавливается синтез п/п цепи. Полный кодовый словарь представлен на таблице; 2) неперекрещиваемость – списывание информации идет только в одном направлении; 3) непрерывность – код является линейным, однонаправленным; 4) универсальность, т.е. одна и та же аминокислота у всех живых организмов кодируется одинаковыми кодами у всех живых существ; 5) вырожденность. Первые две буквы кодона определяют его специфичность, третья менее специфична. Известно 20 аминокислот, а кодонов 61, следовательно, большинство аминокислот кодируется несколькими кодонами (2-6).

Т.о., м-РНК принимает непосредственное участие в биосинтезе белка. Основной постулат молекулярной биологии, показывающий направление переноса генетической информации: ДНКРНКБелок. Однако, в 1974 году американские ученые Темин и Балтимор показали возможность считывания информации и в обратном направлении с РНК на ДНК: ДНК↔РНКбелок. Этот процесс идет с участием фермента ревертазы. С его помощью можно синтезировать участок ДНК по м-РНК и перенести этот синтезированный ген в другие объекты, что используется генной инженерией.

р-РНК

На долю этого вида РНК приходится более 80% от всей массы РНК клетки. Она входит в состав рибосом. Рибосомы находятся в цитоплазме клеток, а также имеются митохондриальные рибосомы. Рибосомы – это РНП, состоящие на 65% из р-РНК и на 35% из белка. В составе рибосом имеется более 70 видов белков. При этом большая субъединица содержит 28S и 5,8S рРНК и 49 белков, а малая содержит одну 18S рРНК и 33 белка. Одна р-РНК способна соединяться с 30 молекулами белка. Полинуклеотидная цепь р-РНК легко изгибается и укладывается вместе с белком в компактные тельца. Рибосома состоит из 2-х субъдиниц – большой и малой (соотношение их 2,5:1). В рибосоме различают 2 участка – А (аминокислотный, или участок узнавания) и Р – пептидный, здесь присоединяется п/п цепь. Эти центры расположены на контактирующих поверхностях обеих субъдиниц. Рибосомы могут свободно перемещаться в клетке, что дает возможность синтезировать белки в клетке там, где это необходимо. Рибосомы мало специфичны и могут считывать информацию с чужеродных м-РНК, вместе с м-РНК рибосомы образуют матрицу. Роль р-РНК – обуславливает количество синтезируемого белка.

т-РНК

Этот вид т-РНК изучен лучше всего, составляет 10% всей клеточной РНК. Содержится в цитоплазме, мол.масса небольшая (20тыс.Da) состоит из 70-80 нуклеотидов. Основная роль – транспорт и установка аминокислот на комплиментарном кодоне м-РНК. т-РНК специфичны к аминокислотам, что обеспечивается ферментом аминоацилсинтетазой. В неактивном состоянии она свернута в клубочек, а в активном имеет вид трилистника (клеверного листа). В молекуле т-РНК различают несколько участков: а) акцепторный стебель с последовательностью нуклеотидов АЦЦ, к нему присоединяется аминокислота. Б) участок для присоединения к рибосоме; в) антикодон – участок, комплиментарный кодону м-РНК, который кодирует аминокислоту, присоединенную к данной т-РНК – показать на таблице. Особенностью первичной структуры т-РНК является то, что они содержат минорные, или модифицированные основания (7-метилгуанин, гипоксантин, основание V, дигидроурацил, псевдоурацил, 4-тиоурацил), которые способны к неклассическому спариванию. Это ускоряет белковый синтез. Т.о., т-РНК «метит» аминокислоту, придавая ей специфичность и способствует установлению аминокислоты на определенный участок м-РНК.
мя-РНК

Составляет около 5% от всех РНК в клетке. Эти РНК функционируют в ядре и участвуют в сплайсинге, служат для образования ядерных белков, например, белка-репрессора.

РНК как катализаторы

Помимо основных функций РНК проявляют энзиматическую активность: 1) мя-РНК необходимы для образования м-РНК; 2) РНК ускоряют реакцию трансэстерификации и связаны со сплайсингом и эндорибонуклеазной активностью; 3) р-РНК способны гидролизовать эфиры аминокислот и, таким образом, играют центральную роль в функционировании пептидной связи.

Литература – основная и дополнительная

  1. Березов Т.Т., Коровкин Б.Ф. «Биологическая химия», 1998 – С. 96-114.

  2. Полосухина Т.Я., Аблаев Н.Р. «Материалы к курсу биологической химии», 1977 – 9-12.

  3. Верболович П.А., Полосухина Т.Я., Каипова З.Н. и др. «Практикум по органической, физической и биологической химии», 1973 – лаб.раб.№№ 215.

  4. Верболович П.А, Аблаев Н.Р. «Лекции по отдельным разделам биохимии», 1985 – С. 36-40.

  5. Сеитов З.С. «Биохимия», 2000 – С. 381-424, 648-666.



  1   2   3   4

Похожие:

Нуклеиновые кислоты. Виды, строение, структуры, роль iconПрограмма по биологии для абитуриентов, поступающих в медицинский колледж по специальностям «Сестринское дело»
Химических элементов в клетке. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки. Органические вещества:...
Нуклеиновые кислоты. Виды, строение, структуры, роль iconГетероциклические соединения. Нуклеиновые кислоты. Вопрос №1

Нуклеиновые кислоты. Виды, строение, структуры, роль iconПрограмма вступительных экзаменов в аспирантуру по специальности «биофизика»
Спектрофотометрия. Законы поглощения света. Электронные спектры поглощения биомолекул (аминокислоты, белки, нуклеиновые кислоты)
Нуклеиновые кислоты. Виды, строение, структуры, роль iconДля приобретения полной версии работы щелкните по ссылке
Нуклеиновые кислоты имеют первостепенное биологическое значение и представляют собой сложные высокомолекулярные биополимеры, мономерами...
Нуклеиновые кислоты. Виды, строение, структуры, роль icon3 Понятие информационного процесса. Виды обеспечивающих подсистем ис 5
Роль структуры управления в ис. Функции и типовая организация современной субд 13
Нуклеиновые кислоты. Виды, строение, структуры, роль iconПрограмма дисциплины " строение вещества" введение содержание понятий "
Понятий “строение вещества” и “структура вещества”. Различные аспекты термина “строение молекул”: топологический, геометрический,...
Нуклеиновые кислоты. Виды, строение, структуры, роль iconМетодические указания по определению 2,4 дихлорфеноксиуксусной кислоты (2,4-Д) в воде, почве
При 20 °С 540 мг кислоты растворяется в 1 л воды, 243 г кислоты в 100 мл эфира, 130 г кислоты в 100 мл
Нуклеиновые кислоты. Виды, строение, структуры, роль iconИсследовательская работа по теме Вирусы 10 класс
«яд», чтобы объяснить инфекционный характер вытяжки растений. В результате кропотливых исследований учёных было установлено, что...
Нуклеиновые кислоты. Виды, строение, структуры, роль iconУрок №16: «Развитие представлений о возникновении жизни на Земле. Взгляды и гипотезы о происхождении жизни»
Жизнь связана с белком, сохраняющим определенную структуру. Способ существования белка – обмен веществ. Нуклеиновые кислоты – постоянная...
Нуклеиновые кислоты. Виды, строение, структуры, роль icon«Виды и роль рекламы»
Цель урока: познакомить учащихся с историей возникновения рекламы, выявить виды рекламы, возможные цели и задачи, определить роль...
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org