Практикум по химии Часть 1 Уфа 2006



страница8/13
Дата29.10.2012
Размер1.1 Mb.
ТипПрактикум
1   ...   5   6   7   8   9   10   11   12   13

Б. Налить в две пробирке по 5…6 капель 0,1 Н раствора уксусной кислоты и по 1…2 капли раствора метилового оранжевого. Затем в одну из пробирок ввести 2…3 кристаллика ацетата натрия. Пробирку встряхнуть. Сравнить интенсивность окраски в пробирках. Объяснить причину изменения окраски раствора.
Опыт 5. Смещение ионного равновесия в насыщенном растворе амфотерного электролита

В пробирку налить десять капель раствора соли алюминия. К раствору соли алюминия приливать по каплям разбавленный раствор гидроксида натрия до появления осадка гидроксида алюминия. Разделить осадок на две части (на две пробирки). К одной части прилить избыток соляной кислоты, к другой – избыток концентрированного раствора щёлочи. Что наблюдается в том и другом случае? Объяснить происходящее явление с точки зрения смещения ионного равновесия в насыщенном растворе гидроксида алюминия. Составить ионные уравнения реакций, учитывая, что амфотерный гидроксид плохо растворим в воде.

Контрольные вопросы и упражнения
1. Какие вещества называют электролитами и неэлектролитами?

2. В чём заключаются основные положения электролитической диссоциации?

3. Объяснить процесс диссоциации солей, оснований и кислот с точки зрения строения атомов и молекул.

4. Реакции диссоциации электролитов являются обратимыми. Объяснить, что это значит? Как записывают уравнения реакций диссоциации?

5. Какие электролиты называют сильными, а какие слабыми? Привести примеры.

6. Как зависит способность электролитов к диссоциации от вида химической связи?

7. В 1 л раствора содержится 0,25 г хлорида натрия. Вычислить концентрацию ионов Na+, Cl и общую концентрацию всех ионов.

8. В 1 л 0,01 н раствора муравьиной кислоты HCOOH при комнатной температуре содержится 0,06 г ионов HCOO. Найти константу диссоциации.

9. При какой концентрации уксусной кислоты CH3COOH в водном растворе

 = 1% ? При какой концентрации  в 2 раза больше, если Кдис. = 1,8 . 105 ?

10. Принимая во внимание первую ступень диссоциации сероводородной кислоты, определить  (%) для её 0,01 М раствора (см. приложение 4).

11. Написать следующие молекулярные уравнения реакций в ионном виде:

а) Zn(OH)2 + 2 NaOH = Na2ZnO2 + 2 H2O;

б) Na2ZnO2 + 2 HCl = 2 NaCl + Zn(OH)2.
5. Растворы

5.1 Растворимость веществ в воде. Свойства растворов
Раствором называется термодинамически устойчивая гомогенная (однофазная) система переменного состава, состоящая из двух или более компонентов (химических веществ). Компонентами, составляющими раствор, являются растворитель и растворенное вещество.
Обычно растворителем считается тот компонент, который в чистом виде существует в таком же агрегатном состоянии, что и полученный раствор (например, в случае водного раствора соли растворителем является, конечно, вода). Если же оба компонента до растворения находились в одинаковом агрегатном состоянии (например, спирт и вода), то растворителем считается компонент, находящийся в большем количестве.

Растворы бывают жидкими, твердыми и газообразными.

Жидкие растворы – это растворы солей, сахара, спирта в воде. Жидкие растворы могут быть водными и неводными. Водные растворы – это растворы, в которых растворителем является вода. Неводные растворы – это растворы, в которых растворителями являются органические жидкости (бензол, спирт, эфир и т.д.). Твёрдые растворы – сплавы металлов. Газообразные растворы – воздух и другие смеси газов.

Процесс растворения. Растворение – это сложный физико-химический процесс. При физическом процессе происходит разрушение структуры растворяемого вещества и распределение его частиц между молекулами растворителя. Химический процесс – это взаимодействие молекул растворителя с частицами растворенного вещества. В результате этого взаимодействия образуются сольваты. Если растворителем является вода, то образующиеся сольваты называются гидратами. Процесс образования сольватов называется сольватацией, процесс образования гидратов – гидратацией. При упаривании водных растворов образуются кристаллогидраты – это кристаллические вещества, в состав которых входит определенное число молекул воды (кристаллизационная вода). Примеры кристаллогидратов: CuSO4.5H2O – пентагидрат сульфата меди (II); FeSO4 . 7H2O – гептагидрат сульфата железа (II).

Физический процесс растворения идёт с поглощением энергии, химический – с выделением. Если в результате гидратации (сольватации) выделяется больше энергии, чем ее поглощается при разрушении структуры вещества, то растворение – экзотермический процесс. Выделение энергии происходит при растворении NaOH, H2SO4, Na2CO3, ZnSO4 и других веществ. Если для разрушения структуры вещества надо больше энергии, чем её выделяется при гидратации, то растворение – эндотермический процесс. Поглощение энергии происходит при растворении в воде NaNO3, KCl, NH4NO3, K2SO4, NH4Cl и некоторых других веществ.

Количество энергии, которое выделяется или поглощается при растворении, называется тепловым эффектом растворения.

Растворимостью вещества называется его способность распределяться в другом веществе в виде атомов, ионов или молекул с образованием термодинамически устойчивой системы переменного состава. Количественной характеристикой растворимости является коэффициент растворимости, который показывает, какая максимальная масса вещества может раствориться в 1000 или 100 г воды при данной температуре. Растворимость вещества зависит от природы растворителя и вещества, от температуры и давления (для газов). Растворимость твердых веществ в основном увеличивается при повышении температуры. Растворимость газов с повышением температуры уменьшается, но при повышении давления увеличивается.

По растворимости в воде вещества делят на три группы:

1. Хорошо растворимые (р.). Растворимость веществ больше 10 г в 1000г воды. Например, 2000 г сахара растворяется в 1000 г воды, или в 1 л воды.

2. Малорастворимые (м.). Растворимость веществ от 0,01 г до 10 г в 1000 г воды. Например, 2 г гипса (CaSO4 . 2 H2O) растворяется в 1000 г воды.

3. Практически нерастворимые (н.). Растворимость веществ меньше 0,01 г в 1000 г воды. Например, в 1000 г воды растворяется 1,5 . 103 г AgCl.

При растворении веществ могут образоваться насыщенные, ненасыщенные и пересыщенные растворы.

Насыщенный раствор – это раствор, который содержит максимальное количество растворяемого вещества при данных условиях. При добавлении вещества в такой раствор вещество больше не растворяется.

Ненасыщенный раствор – это раствор, который содержит меньше растворяемого вещества, чем насыщенный при данных условиях. При добавлении вещества в такой раствор вещество еще растворяется.

Иногда удается получить раствор, в котором растворенного вещества содержится больше, чем в насыщенном растворе при данной температуре. Такой раствор называется пересыщенным. Этот раствор получают при осторожном охлаждении насыщенного раствора до комнатной температуры. Пересыщенные растворы очень неустойчивы. Кристаллизацию вещества в таком растворе можно вызвать путем потирания стеклянной палочкой стенок сосуда, в котором находится данный раствор. Этот способ применяется при выполнении некоторых качественных реакций.

Растворимость вещества может выражаться и молярной концентрацией его насыщенного раствора (п.2.2).

Константа растворимости. Рассмотрим процессы, возникающие при взаимодействии малорастворимого, но сильного электролита сульфата бария BaSO4 с водой. Под действием диполей воды ионы Ba2+ и SO42 из кристаллической решетки BaSO4 будут переходить в жидкую фазу. Одновременно с этим процессом под влиянием электростатического поля кристаллической решетки часть ионов Ba2+ и SO42 вновь будет осаждаться (рис.3). При данной температуре в гетерогенной системе, наконец, установится равновесие: скорость процесса растворения (V1) будет равна скорости процесса осаждения (V2), т.е.

V1 = V2 :


BaSO4 ⇄ Ba2+ + SO42

твёрдая раствор

фаза
Рис. 3. Насыщенный раствор сульфата бария
Раствор, находящийся в равновесии с твердой фазой BaSO4, называется насыщенным относительно сульфата бария.

Насыщенный раствор представляет собой равновесную гетерогенную систему, которая характеризуется константой химического равновесия:
, (1)
где a (Ba2+) – активность ионов бария; a(SO42-) – активность сульфат-ионов;

a (BaSO4) – активность молекул сульфата бария.

Знаменатель этой дроби – активность кристаллического BaSO4 – является постоянной величиной, равной единице. Произведение двух констант дает новую постоянную величину, которую называют термодинамической константой растворимости и обозначают Кs :
Кs = a(Ba2+) . a(SO42-). (2)
Эту величину раньше называли произведением растворимости и обозначали ПР.

Таким образом, в насыщенном растворе малорастворимого сильного электролита произведение равновесных активностей его ионов есть величина постоянная при данной температуре.

Если принять, что в насыщенном растворе малорастворимого электролита коэффициент активности f~1, то активность ионов в таком случае можно заменить их концентрациями, так как а(X) = f (X) . С(X). Термодинамическая константа растворимости Кs перейдет в концентрационную константу растворимости Кs:

Кs = С(Ba2+) . С(SO42-), (3)
где С(Ba2+) и С(SO42) – равновесные концентрации ионов Ba2+ и SO42 (моль/л) в насыщенном растворе сульфата бария.

Для упрощения расчётов обычно пользуются концентрационной константой растворимости Кs , принимая f (Х) = 1 (приложение 2).

Если малорастворимый сильный электролит образует при диссоциации несколько ионов, то в выражение Кs (или Кs) входят соответствующие степени, равные стехиометрическим коэффициентам:
PbCl2 ⇄ Pb2+ + 2 Cl; Ks = С (Pb2+) . С2 (Cl);

Ag3PO4 3 Ag+ + PO43; Ks = С3 (Ag+) . С (PO43).
В общем виде выражение концентрационной константы растворимости для электролита AmBnm An+ + n Bm имеет вид
Ks = Сm (An+) . Сn (Bm),
где С  концентрации ионов An+ и Bm в насыщенном растворе электролита в моль/л.

Величиной Ks принято пользоваться только в отношении электролитов, растворимость которых в воде не превышает 0,01 моль/л.

Условия образования осадков

Предположим, с  фактическая концентрация ионов трудно растворимого электролита в растворе.

Если Сm (An+) . Сn (Bm-) > Ks , то произойдет образование осадка, т.к. раствор становится пересыщенным.

Если Сm (An+) . Сn (Bm) < Ks , то раствор является ненасыщенным и осадок не образуется.

Свойства растворов. Ниже рассмотрим свойства растворов неэлектролитов. В случае электролитов в приведённые формулы вводится поправочный изотонический коэффициент.

Если в жидкости растворено нелетучее вещество, то давление насыщенного пара над раствором меньше давления насыщенного пара над чистым растворителем. Одновременно с понижением давления пара над раствором наблюдается изменение его температуры кипения и замерзания; температуры кипения растворов повышаются, а температуры замерзания понижаются по сравнению с температурами, характеризующими чистые растворители.

Относительное понижение температуры замерзания или относительное повышение температуры кипения раствора пропорционально его концентрации:

∆t = KСm ,
где К – константа (криоскопическая или эбулиоскопическая);

Сm – моляльная концентрация раствора, моль/1000 г растворителя.

Так как Сm = m/M, где m – масса вещества (г) в 1000 г растворителя,

М – молярная масса, приведенное уравнение можно представить:
; .
Таким образом, зная для каждого растворителя величину К, задав m и экспериментально определив ∆t в приборе, находят М растворенного вещества.

Молярная масса растворенного вещества может быть определена путём измерения осмотического давления раствора (π) и рассчитана по уравнению Вант – Гоффа:

; .

Лабораторная работа

Растворимость веществ в воде. Свойства растворов
Цель работы

Ознакомление с физико-химической природой процесса растворения, растворимостью вещества, различными видами растворов, а также с основными свойствами растворов.
Оборудование и реактивы

Шпатель. Стеклянные палочки. Песчаные бани. Мерный цилиндр. Стакан. Криоскоп. Ацетат натрия (крист.). Хлорид кальция (крист.). Нитрат аммония (крист.). Сульфат натрия (крист.). Гидроксид натрия (крист.). Глицерин. Раствор хлорида натрия (10 % - ный). Охладительная смесь (лёд + соль).
Опыт 1. Тепловые эффекты при растворении

А. Стаканчик наполовину наполнить водой и добавить немного твёрдого гидроксида натрия. Перемешать содержимое пробирки стеклянной палочкой и измерить температуру раствора.

Б. Провести аналогичный опыт с нитратом аммония. Отметить самую низкую температуру.

В. Стаканчик наполнить водой на 1/3 её объёма и измерить температуру. Взвесить 2 – 3 г кристаллогидрата сульфата натрия и добавить навеску соли в пробирку. Осторожно помешивая раствор, наблюдать изменения температуры. Показания термометра отметить в лабораторном журнале.
Опыт 2. Пересыщенные растворы

Пересыщенный раствор ацетата натрия готовят из расчёта трёх объемных частей соли на одну объемную часть воды.

В большую пробирку поместить кристаллы ацетата натрия и добавить соответствующий объём воды. Содержимое пробирки нагреть на слабом пламени газовой горелки до полного растворения кристаллов соли. Охладить пробирку под струей холодной воды. Добавить к раствору несколько капель глицерина, способствующего образованию более крупных кристаллов. Внести несколько кристаллов ацетата натрия в охлажденный раствор и наблюдать процесс кристаллизации растворенного вещества. Отметить экзотермический характер процесса.

Повторно нагреть содержимое пробирки до полного растворения соли и охладить раствор. Вызвать выпадение кристаллов за счет трения стеклянной палочки о стенку пробирки.
1   ...   5   6   7   8   9   10   11   12   13

Похожие:

Практикум по химии Часть 1 Уфа 2006 iconУчебное пособие Уфа 2006 удк 519. 8 Б 19 ббк 22. 1: 22. 18 (Я7)
Бакусова С. М. Математика. Часть Математическое программирование / Учебное пособие. Уфа: ООО полиграфстудия «Оптима», 2006. – 71...
Практикум по химии Часть 1 Уфа 2006 iconПрактикум по химии Братск 2006 удк 543 Аналитический сигнал: Практикум по химии/ М. А. Варданян. Братск: гоу впо «БрГУ», 2006. 35с
Аналитический сигнал: Практикум по химии/ М. А. Варданян. Братск: гоу впо «БрГУ», 2006. 35с
Практикум по химии Часть 1 Уфа 2006 iconПрактикум Васильева, Грановская «Лаб. Практикум общей и неорганической химии»
Предметом изучения химии является вещество. Веществом называется вид материи, имеющий массу покоя. Цель химии получать вещества с...
Практикум по химии Часть 1 Уфа 2006 iconУчебное пособие Уфа 2006 удк 330. 43
Еникеев Т. И. Эконометрика. / Учебное пособие. Уфа: ООО полиграфстудия «Оптима». 2006. 116 с., табл. 7, рис. 5, библ. –24 наз
Практикум по химии Часть 1 Уфа 2006 iconМатематика часть 3 Основы интегрального исчисления
Математика. Учебное пособие. Часть Основы интегрального исчисления. – Уфа: Уфимск гос акад экон и сервиса, 2006. – 45 с
Практикум по химии Часть 1 Уфа 2006 iconПрактикум по аналитической химии учебное пособие
Практикум предназначен для студентов химического факультета, обучающихся по специальности 011000- «Химия»
Практикум по химии Часть 1 Уфа 2006 iconИштирякова д. К
Математика. Часть Дифференциальное исчисление функций нескольких переменных. Дифференциальные уравнения. Ряды: Учебное пособие /...
Практикум по химии Часть 1 Уфа 2006 iconЗакон республики татарстан о внесении изменения в бюджетный кодекс республики татарстан принят
Татарстана, 2004, n 4-5; 2005, n 6 (II часть), n 10 (I часть), n 12 (IV часть); 2006, n 6 (I часть), n 12 (I часть); 2007, n 8, n...
Практикум по химии Часть 1 Уфа 2006 iconПрактикум по дисциплине «Материаловедение. Технология конструкционных материалов»
Лабораторный практикум по дисциплине «Материаловедение. Технология конструкционных материалов» / Уфимск гос авиац техн ун-т; Сост.:...
Практикум по химии Часть 1 Уфа 2006 iconПрактикум xix xx xxi xxii xxiii xxiv xxv xxvi xxvii xxviii
Культурология. Практикум / Е. В. Бранская, Е. А. Дядина, В. Е. Леонов и др.; Под редакцией М. И. Панфиловой. – Спб.: Спбгиэу, 2006....
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org