Охлаждения активной зоны

Скачать 396.68 Kb.
Размер396.68 Kb.
1   2   3   4   5

[edit] 1970s

  • December 7, 1975 – INES Level 3 - Greifswald, Germany (then East Germany) - Partly damaged

  • Operators disabled three of six cooling pumps' electrical supply circuits to test emergency shutoffs. Instead of the expected automatic shutdown, a fourth pump failed causing excessive heating which damaged ten fuel rods. The accident was attributed to sticky relay contacts and generally poor construction in the Soviet-built reactor.[22]

  • February 22, 1977 – INES Level 4 - Jaslovské Bohunice, Slovakia (then Czechoslovakia) - Fuel damaged

  • Operators neglected to remove moisture-absorbing materials from a fuel rod assembly before loading it into the KS 150 reactor at power plant A-1. The accident resulted in damaged fuel integrity, extensive corrosion damage of fuel cladding and release of radioactivity into the plant area. The affected reactor was decommissioned following this accident.[23]

  • March 28, 1979 – INES Level 5[citation needed] - Middletown, Dauphin County, Pennsylvania, United States - Partial meltdown

  • Equipment failures and worker mistakes contributed to a loss of coolant and a partial core meltdown at the Three Mile Island Nuclear Generating Station 15 km (9.3 mi) southeast of Harrisburg. While the reactor was extensively damaged, on-site radiation exposure was under 100 millirems (less than annual exposure due to natural sources). Area residents received a smaller exposure of 1 millirem (10 µSv), or about 1/3 the dose from eating a banana per day for one year. There were no fatalities. Follow-up radiological studies predict between zero and one long-term cancer fatality.[24][25][26]

See also: Three Mile Island accident

[edit] 1980s

  • March 13, 1980 - INES Level 4 - Orléans, France - Nuclear materials leak

  • A brief power excursion in Reactor A2 led to a rupture of fuel bundles and a minor release (8 x 1010 Bq) of nuclear materials at the Saint-Laurent Nuclear Power Plant. The reactor was repaired and continued operation until its decommissioning in 1992.[27]

  • March, 1981 — INES Level 2 - Tsuruga, Japan - Radioactive materials released into Sea of Japan + Overexposure of workers

  • More than 100 workers were exposed to doses of up to 155 millirem per day radiation during repairs of the Tsuruga Nuclear Power Plant, violating the Japan Atomic Power Company's limit of 100 millirems (1 mSv) per day.

  • September 23, 1983 — INES Level 4 - Buenos Aires, Argentina - Accidental criticality

  • An operator error during a fuel plate reconfiguration in an experimental test reactor led to an excursion of 3×1017 fissions at the RA-2 facility. The operator absorbed 2000 rad (20 Gy) of gamma and 1700 rad (17 Gy) of neutron radiation which killed him two days later. Another 17 people outside of the reactor room absorbed doses ranging from 35 rad (0.35 Gy) to less than 1 rad (0.01 Gy).[29] pg103[30]

  • April 26, 1986 — INES Level 7 - Prypiat, Ukraine (then USSR) - Power excursion, explosion, complete meltdown

  • An inadequate reactor safety system[31] led to an uncontrolled power excursion, causing a severe steam explosion, meltdown and release of radioactive material at the Chernobyl nuclear power plant located approximately 100 kilometers north-northwest of Kiev. Approximately fifty fatalities (mostly cleanup personnel) resulted from the accident and the immediate aftermath. An additional nine fatal cases of thyroid cancer in children in the Chernobyl area have been attributed to the accident. The explosion and combustion of the graphite reactor core spread radioactive material over much of Europe. 100,000 people were evacuated from the areas immediately surrounding Chernobyl in addition to 300,000 from the areas of heavy fallout in Ukraine, Belarus and Russia. An "Exclusion Zone" was created surrounding the site encompassing approximately 1,000 mi² (3,000 km²) and deemed off-limits for human habitation for an indefinite period. Several studies by governments, UN agencies and environmental groups have estimated the consequences and eventual number of casualties. Their findings are subject to controversy.

See also: Chernobyl disaster

  • May 4, 1986 – INES Level 3-5 (need ref) - Hamm-Uentrop, Germany (then West Germany) - Fuel damaged

  • A spherical fuel pebble became lodged in the pipe used to deliver fuel elements to the reactor at an experimental 300-megawatt THTR-300 HTGR. Attempts by an operator to dislodge the fuel pebble damaged its cladding, releasing radiation detectable up to two kilometers from the reactor.[32]

[edit] 1990s

  • April 6, 1993 — INES Level 4 - Tomsk, Russia - Explosion

  • A pressure buildup led to an explosive mechanical failure in a 34 cubic meter stainless steel reaction vessel buried in a concrete bunker under building 201 of the radiochemical works at the Tomsk-7 Siberian Chemical Enterprise plutonium reprocessing facility. The vessel contained a mixture of concentrated nitric acid, uranium (8757 kg), plutonium (449 g) along with a mixture of radioactive and organic waste from a prior extraction cycle. The explosion dislodged the concrete lid of the bunker and blew a large hole in the roof of the building, releasing approximately 6 GBq of Pu 239 and 30 TBq of various other radionuclides into the environment. The contamination plume extended 28 km NE of building 201, 20 km beyond the facility property. The small village of Georgievka (pop. 200) was at the end of the fallout plume, but no fatalities, illnesses or injuries were reported. The accident exposed 160 on-site workers and almost two thousand cleanup workers to total doses of up to 50 mSv (the threshold limit for radiation workers is 100 mSv per 5 years).[33][34][35]

  • June, 1999 — INES Level 2[36] - Ishikawa Prefecture, Japan - Control rod malfunction

  • Operators attempting to insert one control rod during an inspection neglected procedure and instead withdrew three causing a 15 minute uncontrolled sustained reaction at the number 1 reactor of Shika Nuclear Power Plant. The Hokuriku Electric Power Company who owned the reactor did not report this incident and falsified records, covering it up until March, 2007.[37]

  • September 30, 1999 — INES Level 4 - Ibaraki Prefecture, Japan - Accidental criticality

  • Inadequately trained part-time workers prepared a uranyl nitrate solution containing about 16.6 kg of uranium, which exceeded the critical mass, into a precipitation tank at a uranium reprocessing facility in Tokai-mura northeast of Tokyo, Japan. The tank was not designed to dissolve this type of solution and was not configured to prevent eventual criticality. Three workers were exposed to (neutron) radiation doses in excess of allowable limits. Two of these workers died. 116 other workers received lesser doses of 1 mSv or greater though not in excess of the allowable limit.[38][39][40][41]

See also: Tokaimura nuclear accident
1   2   3   4   5


Охлаждения активной зоны iconОхлаждения активной зоны
При проведении подготовительных работ перед запуском реактора sl-1 произошел взрыв. Погибло 3 человека, реактор разрушен
Охлаждения активной зоны iconТеплогидравлический анализ активной зоны быстрых реакторов с натриевым теплоносителем
Бр в различных режимах их работы. Теплогидравлический анализ активной зоны яр является важнейшей компонентой комплекса взаимосвязанных...
Охлаждения активной зоны iconТепло-гидравлический расчет активной зоны
Цель расчета: определение изменения температур по активной зоне, расчет максимальной температуры оболочки и топлива, определение...
Охлаждения активной зоны iconПродление срока эксплуатации реакторных установок аэс, выработавших
Наибольшая активность образуется в активной зоне реактора в виде продуктов деления ядер ядм на осколки и в остальных компонентах...
Охлаждения активной зоны iconИ образования
Назначение. Резервуар непосредственного охлаждения закрытый роз-1,6 вместимостью 1600 л предназначен для сбора, охлаждения и хранения...
Охлаждения активной зоны iconПервый проректор но учебной работе
Цель дисциплины изложить основные принципы разработки систем охлаждения различных электронных устройств, а также концепции теплового...
Охлаждения активной зоны iconНовые материалы в технике косвенно-испарительного охлаждения воздуха
Несмотря на эти преимущества косвенно-испарительный метод охлаждения воздуха очень мало применяется в нашей стране
Охлаждения активной зоны iconДвигатель с внешним подводом тепла
Все эти натяжения даны для малой мощности, для большей – больше, для мощных грузовиков и 100 или 200 килограмм, а количество пружин...
Охлаждения активной зоны icon«Природные зоны России»
Образовательная: расширить знания учащихся о природных зонах; научить применять теоретические знания о взаимосвязях компонентов природы...
Охлаждения активной зоны iconЭлектрические характеристики диэлектриков
Если значения энергии заполненной зоны и зоны проводимости перекрываются, то при незначительном возбуждении электроны будут переходить...
Разместите кнопку на своём сайте:

База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации