«Деление ядер. Ядерные превращения.»



Скачать 176.55 Kb.
Дата26.07.2014
Размер176.55 Kb.
ТипДокументы



МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
Национальный исследовательский ядерный университет «МИФИ»
Факультет Управления и экономики высоких технологий

Институт международных отношений


Реферат на тему:

«Деление ядер. Ядерные превращения.»

Подготовила студентка

Группы У4-03

Саблина Юлия
Москва 2011

Оглавление


Глава 2. Атомное ядро 7

2.1 Характеристика 7

Глава 3. Радиоактивность 8

Глава 4. Деление атомных ядер 12

Глава 5. Взаимодействие нейтронов с атомными ядрами 14

Заключение 15

Список источников 17


7

ВВЕДЕНИЕ


Энергетика - важнейшая отрасль народного хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Это основа экономики государства.

В мире идет процесс индустриализации, который требует дополнительного расхода материалов, что увеличивает энергозатраты. С ростом населения становится больше энергозатрат на обработку почвы, уборку урожая, производство удобрений и т.д.

В настоящее время многие природные легкодоступные ресурсы планеты исчерпываются. Добывать сырье приходится на большой глубине или на морских шельфах. Ограниченные мировые запасы нефти и газа, казалось бы, ставят человечество перед перспективой энергетического кризиса. Однако использование ядерной энергии и угля дает человечеству возможность избежать этого, результаты фундаментальных исследований физики атомного ядра позволяют отвести угрозу энергетического кризиса путем использования энергии, выделяемой при некоторых реакциях атомных ядер.

Глава 1. Область применения

    1. Примеры


Область применения ядерных реакций очень обширна. В настоящее время ядерные реакции применяются в следующих областях деятельности человечества: энергетика, военная сфера, синтез новых элементов, медицина, научные исследования.

Как Вы можете увидеть, ядерные реакции проникли практически во все сферы деятельности человека. Рассмотрим их по отдельности.

1.1.1.Энергетика. Энергетика - важнейшая отрасль хозяйства и промышленности. Не зря мой проект рассматривает именно проблемы этой отрасли. Благодаря тому, что человек научился проводить управляемую ядерную реакцию и аккумулировать полученную энергию, затрачивая при этом минимальное количество сырья, намного уменьшилось потребление традиционных видов органического топлива. Секрет успеха ядерной энергетики заключается в том, что количество сырья практически неисчерпаемо на Земле.

По расчетам специалистов урана при текущем потреблении хватит на Земле еще на несколько десятков тысяч лет. Обычно, для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло. Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках; США осуществляют программу по созданию ядерного двигателя для космических кораблей, кроме того, делались попытки создать ядерный двигатель для самолётов.

1.1.2.Военная сфера. Применение цепных ядерных реакций в военной сфере вызывает наибольшее количество вопросов и опасений. При проведении неуправляемой, т.е. взрывной, ядерной реакции с целью уничтожения чего-либо. погибает все живое на огромных пространствах. Не зря ядерное оружие относят к числу оружия массового поражения. Впервые силу ядерного оружия ощутили на себе японцы - жители городов Хиросима и Нагасаки - в конце Второй мировой войны. Последствия сказываются и в наше время. Дело в том, что при взрыве в окружающую среду выплескивается огромное количество радиации. вредной для человека. В наши дни в вышеназванных городах все еще рождаются дети с аномальными отклонениями физического состояния - это потомки тех людей. которые подверглись радиационному облучению в день взрывов.

1.1.3.Синтез новых элементов. Ядерные реакции являются, по сути. реакциями получения новых элементов, т.к. при расщеплении или слиянии ядер получаются другие элементы таблицы Менделеева. Существуют несколько видов реакций - альфа-распад, бета-распад и гамма-распад.

1.1.4.Медицина. В связи с прогрессом в развитии техники ускорителей и новых диагностических систем, таких как сцинтилляционные камеры, однолучевой и позитронно- эмиссионный томографы, низкоэнергетические детекторы типа многопроволочных пропорциональных камер и др., все большее значение в медицинских и биохимических исследованиях приобретают различные радионуклиды. В современной ядерной медицине для научно-исследовательских, диагностических и терапевтических целей применяют свыше 50 циклотронных радионуклидов с периодом полураспада от нескольких минут до нескольких лет. В работе рассматриваются общие положения, методы и экспериментальные результаты, определяющие получение наиболее важных и широко используемых в настоящее время, а также перспективных для ядерной медицины и биохимии циклотронных радионуклидов. Среди них группа ультракороткоживуших изотопов (11С, 13N, 15O, 18F), некоторые гамма- излучатели (123I, 201Tl, 67Ga, 111In), генераторные радионуклиды (18Rb,81mKr, 82Sr, 82Rb, 52Fe, 52mMn и др.), группа перспективных радионуклидов специального назначения (26Al, 67Cu, 97Ru, 237Pu) и ряд других изотопов.

1.1.5.Научные исследования. Ядерные реакции довольно широко применяются в научных работах в определенных сферах. Существуют целуе научные города, занимающиеся научными исследованиями с использованием ядерных технологий. Самый яркий пример - подмосковная Дубна, недавно получившая официальный статус наукограда.

Энергия деления ядер урана или плутония применяется в атомных бомбах, ядерных ракетах, ядерных снарядах и минах. В атомных электрических станциях ядерная энергия используется для получения электроэнергии и для отопления. Деление ядра лежит в основе двигателей атомных ледоколов, атомных подводных лодок, атомных авианосцев. Использованием ядерной энергии в целях электрификации и теплофикации занимается ядерная энергетика.

Энергия термоядерного синтеза применяется в водородной бомбе.

Энергия, выделяемая при радиоактивном распаде, используется в долгоживущих источниках тепла и бетагальванических элементах. Автоматические межпланетные станции типа «Пионер» и «Вояджер» используют радиоизотопные термоэлектрические генераторы. Изотопный источник тепла использовал советский Луноход-1.


Глава 2. Атомное ядро

2.1 Характеристика


Атомное ядро характеризуется зарядом Ze, массой М, спином J, магнитным и электрическим квадрупольным моментом Q, определенным радиусом R, изотопическим спином Т и состоит из нуклонов - протонов и нейтронов.

Число нуклонов А в ядре называется массовым числом. Число Z называют зарядовым числом ядра или атомным номером. Поскольку Z определяет число протонов, а А - число нуклонов в ядре, то число нейронов в атомном ядре N=A-Z. Атомные ядра с одинаковыми Z, но различными А называются изотопами. В среднем на каждое значение Z приходится около трех стабильных изотопов. Например, 28Si, 29Si, 30Si являются стабильными изотопами ядра Si. Кроме стабильных изотопов, большинство элементов имеют и нестабильные изотопы, для которых характерно ограниченное время жизни.

Ядра с одинаковым массовым числом А называются изобарами, а с одинаковым числом нейтронов- изотонами.

Все атомные ядра разделяются на стабильные и нестабильные. Свойства стабильных ядер остаются неизменными неограниченно долго. Нестабильные же ядра испытывают различного рода превращения .

Экспериментальные измерения масс атомных ядер, выполненные с большой точностью, показывают, что масса ядра всегда меньше суммы масс составляющих его нуклонов.

Энергия связи - это энергия, которую необходимо затратить, чтобы разделить ядро на составляющие его нуклоны.

Энергия связи, отнесенная к массовому числу А, называется средней энергией связи нуклона в атомном ядре ( энергия связи на один нуклон ).

Энергия связи приблизительно постоянна для всех стабильных ядер и примерно равна 8 МэВ. Исключением является область легких ядер, где средняя энергия связи растет от нуля (А=1) до 8 МэВ для ядра 12С.

Аналогично энергия связи на один нуклон можно ввести энергию связи ядра относительно других составных его частей.

В отличие от средней энергии связи нуклонов количество энергии связи нейрона и протона изменяется от ядра к ядру.

Часто вместо энергии связи используют величину, называемую дефектом массы и равную разности масс и массового числа атомного ядра.


Глава 3. Радиоактивность

3.1. Общие сведения


Радиоактивность— свойство атомных ядер самопроизвольно изменять свой состав путём испускания элементарных частиц или ядерных фрагментов. Соответствующее явление называется радиоактивным распадом. Радиоактивностью называют также свойство вещества, содержащего радиоактивные ядра.

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).



Естественная радиоактивность — самопроизвольный распад ядер элементов, встречающихся в природе.

Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.

Явление радиоактивности, или спонтанного распада ядер, была открыта французским физиком А. Беккерелем в 1896 г. Он обнаружил, что уран и его соединения испускают лучи или частицы, проникающие сквозь непрозрачные тела и способные засвечивать фотопластинку, Беккерель установил, что интенсивность излучения пропорциональна только концентрации урана и не зависит от внешних условий (температура, давление) и от того, находится ли уран в каких-либо химических соединениях.

Английскими физиками Э. Резерфордом и Ф. Содди было доказано, что во всех радиоактивных процессах происходят взаимные превращения атомных ядер химических элементов. Изучение свойств излучения, сопровождающего эти процессы в магнитном и электрическом полях, показало, что оно разделяется на -частицы (ядра гелия), - частцы (электроны) и - лучи (электромагнитное излучение с очень малой длиной волны ).

Атомное ядро, испускающее -кванты, -, - или другие частицы, называется радиоактивным ядром. В природе существует 272 стабильных атомных ядра. Все остальные ядра радиоактивны и называются радиоизотопами.


3.2.Альфа- распад


Энергия связи ядра характеризует его устойчивость к распаду на составные части. Если энергия связи ядра меньше энергии связи продуктов его распада, то это означает, что ядро может самопроизвольно (спонтанно) распадаться. При альфа- распаде альфа-частицы уносят почти всю энергию и только 2 % ее приходится на вторичное ядро. При альфа- распаде массовое число изменяется на 4 единицы, а атомный номер на две единицы.

Альфа-распад, вид радиоактивного распада ядра, в результате которого происходит испускание альфа-частицы. При этом массовое число уменьшается на 4, а атомный номер — на 2. Альфа-распад наблюдается только у тяжёлых ядер (Атомный номер должен быть больше 82, массовое число должно быть больше 200 ). Альфа-частица испытывает туннельный переход через кулоновский барьер в ядре, поэтому альфа-распад является существенно квантовым процессом. Поскольку вероятность туннельного эффекта зависит от высоты барьера экспоненциально, период полураспада альфа-активных ядер экспоненциально растёт с уменьшением энергии альфа-частицы (этот факт составляет содержание закона Гейгера-Неттола). При энергии альфа-частицы меньше 2 МэВ время жизни альфа-активных ядер существенно превышает время существования Вселенной. Поэтому, хотя большинство природных изотопов тяжелее церия в принципе способны распадаться по этому каналу, лишь для немногих из них такой распад действительно зафиксирован.

Скорость вылета альфа-частицы 14000-20000 км/с. В общем виде формула альфа-распада выглядит следующем образом:

 \ ^{a}_{z}{\rm{x}} \rightarrow ^{a-4}_{z-2}{\rm{y}} + \alpha \ (^4_2 {\rm{he}})

Пример альфа-распада для изотопа 238U:



 \ ^{238}_{92}{\rm{u}} \rightarrow ^{234}_{90}{\rm{th}} + \alpha \ (^4_2 {\rm{he}})

Альфа-распад может рассматриваться как предельный случай кластерного распада.


3.3.Бета-распад


c:\users\кирилл\desktop\beta-decay.jpg

Исторически исследование бета-распада привело к первому физическому свидетельству существования нейтрино. В 1911 году Лиза Мейтнер и Отто Ган провели эксперимент, который показал, что энергии электронов, испускаемых при бета-распаде, имеют непрерывный, а не дискретный спектр. Это находилось в очевидном противоречии с законом сохранения энергии, поскольку получалось, что часть энергии терялась в процессах бета-распада. Вторая проблема заключалась в том, что спин атома азота-14 был равен 1, что противоречило предсказанию Резерфорда — ½. В известном письме, написанном в 1930 году, Вольфганг Паули предположил, что помимо электронов и протонов атомы содержат очень легкую нейтральную частицу, которую он назвал нейтроном. Он предположил, что этот «нейтрон» испускается при бета-распаде и раньше просто не наблюдался. В 1931 году Энрико Ферми переименовал «нейтрон» Паули в нейтрино, и в 1934 году Ферми опубликовал очень удачную модель бета-распада, в которой участвовали нейтрино.

Бета- распад — тип радиоактивного распада, обусловленного слабым взаимодействием и изменяющего заряд ядра на единицу. При этом ядро может излучать бета-частицу (электрон или позитрон). В случае испускания электрона он называется «бета-минус» (β ), а в случае испускания позитрона — «бета-плюс-распадом» (β + ). Кроме β и β + -распадов, к бета-распадам относят также электронный захват, когда ядро захватывает атомный электрон. Во всех типах бета-распада ядро излучает электронное нейтрино (β + -распад, электронный захват) или антинейтрино (β -распад).





3.4.Позитронный бета- распад


Позитронный распад — тип бета- распада, также иногда называемый «бета-плюс-распад» (β+-распад), «эмиссия позитронов» или «позитронная эмиссия». В β+-распаде один из протонов ядра превращается посредством слабого взаимодействия в нейтрон, позитрон и электронное нейтрино. Многие изотопы испускают позитроны, в том числе углерод-11, азот-13, кислород-15, фтор-18, иод-121. Например, в следующем уравнении рассматривается превращение посредством β+-распада углерода-11 в бор-11 с испусканием позитрона e+ и электронного нейтрино νe:

{}^{11}\hbox{c}\;\to\;^{11}\hbox{b}\;+\;e^+\;+\;\nu_e.

Процесс позитронного распада всегда конкурирует с электронным захватом, который имеет энергетический приоритет, но как только энергетическая разница исчезает, коэффициент ветвления реакции сдвигается в сторону позитронного распада. Для того, чтобы позитронный распад мог происходить, разница между массами распадающегося и дочернего атомов Qβ должна превосходить удвоенную массу электрона (то есть Qβ > 2me = 2×511 кэВ = 1022 кэВ). В то же время электронный захват может происходить при любой положительной разнице масс.

Спектр кинетической энергии позитронов, испускаемых ядром в позитронном распаде, непрерывен и лежит в диапазоне от 0 до Emax = Qβ − 2me. В этом же диапазоне лежит энергия излучаемых нейтрино. Сумма кинетических энергий позитрона и нейтрино равна Emax. Позитрон почти мгновенно аннигилирует с одним из электронов окружающего распавшийся атом вещества, излучая два аннигиляционных гамма- кванта с энергией 511 кэВ и противоположно направленным импульсом. Детектирование таких гамма- квантов позволяет легко восстановить точку аннигиляции, поэтому изотопы, испытывающие позитронный распад, используются в позитронно- эмиссионной томографии.

3.5. Гамма- распад


Стабильные ядра находятся в состоянии, отвечающем наименьшей энергии. Это состояние называется основным. Однако путем облучения атомных ядер различными частицами или высокоэнергитическими протонами им можно передать определенную энергию и, следовательно, перевести в состояния, отвечающие большей энергии. Переходя через некоторое время из возбужденного состояния в основное, атомное ядро может испустить или частицу, если энергия возбуждения достаточно высока, или высокоэнергетическое электромагнитное излучение - гамма-квант.

Поскольку возбужденное ядро находится в дискретных энергетических состояниях, то и гамма-излучение характеризуется линейчатым спектром.




Глава 4. Деление атомных ядер

4.1.Общие сведения


Явление деления тяжелых атомных ядер на два осколка было открыто Ганом и Штрассманом в 1939 г. При изучении взаимодействия нейтронов различных энергий и ядер урана. Несколько позже, в 1940 г. Советские физики К.А.Петржак и Г.И. Флеров обнаружили самопроизвольное (спонтанное) деление ядер урана. При спонтанном деление и делении, вызванном нейронами, как правило, образуется асимметричные осколки, отношение масс которых примерно равно 3 : 2.

При реакции деления выделяется очень большая энергия. Энергия деления высвобождается в виде кинетической энергии ядер-осколков, кинетической энергии испускаемых ядрами-осколками электронов, гамма-квантов, нейтрино, нейтронов.

Основная часть энергии деления приходится на энергию ядер-осколков, поскольку под действием кулоновских сил отталкивания они приобретают большую кинетическую энергию. Основная часть энергии деления выделяется в виде кинетической энергии ядер-осколков.

Замечательным и чрезвычайно важным свойством реакции деления является то, что в результате деления образуется несколько нейтронов. Это обстоятельство позволяет создать условия для поддержания стационарной или развивающейся во времени цепной реакции деления ядер. Действительно, если в среде, содержащей делящиеся ядра, один нейтрон вызывают реакцию деления, то образующиеся в результате реакции нейтроны могут с определенной вероятностью вызвать деление ядер, что может привести при соответствующих условиях к развитию неконтролируемого процесса деления. Число вторичных нейтронов не постоянно для всех тяжелых ядер и зависит как от энергии вызвавшего деление нейтрона, так и от свойств ядра-мишени. Среди нейтронов деления кроме так называемых мгновенных нейтронов,испускаемых за 10-15 с после процесса деления, есть также и запаздывающие нейтроны. Они испускаются в течении нескольких минут с постепенно убывающей интенсивность. Мгновенные нейтроны составляют более 99% полного числа нейтронов деления, а их энергия заключена в широком диапазоне: от тепловой энергии и до энергии приблизительно равной 10 МэВ.

Запаздывающие нейтроны испускаются возбужденными ядрами образующихся после бета-распада продуктов деления - ядер-предшественников. Поскольку испускание нуклонов возбужденным ядром происходит мгновенно, то во время испускания запаздывающего нейтрона после акта деления будет определяться постоянной распада ядра-предшественника.

4.2.Продукты деления


В результате деления тяжелых ядер образуются, как правило, два ядра-осколка с различной массой. В среднем отношение масс легких и тяжелых осколков равно 2 : 3. Как правило, ядра-осколки имеют большой избыток нейтронов и поэтому неустойчивы относительно вета-распада. Массовые числа А продуктов деления меняются от 72 до 161, а атомные номера от 30 до 65. Вероятность симметричного деления на два осколка с приблизительно равными массами составляет всего 0,04%. Доля симметричного деления возрастает по мере увеличения энергии первичного нейтрона, вызывающего деление атомного ядра

.c:\users\кирилл\desktop\1.1.6.gif


Глава 5. Взаимодействие нейтронов с атомными ядрами


Различные частицы могут взаимодействовать с атомными ядрами. Характер взаимодействия зависит от энергии частиц, их типа и свойств атомного ядра. Для оценки вероятности взаимодействия вводится величина, называемая микроскопическим сечением взаимодействия. Физический смысл ее состоит в следующем. Пусть пучок нейтронов интенсивностью No падает на мишень, состоящую из одного слоя ядер. Число ядер на единице поверхности равно М. Предположим, что при прохождении пучка через такой слой часть нейтронов поглотиться в нем и через слой прошло N`. Тогда вероятность взаимодействия одного нейтрона с одним атомным ядром:

= No-N`

NoM

Это и есть микроскопическое сечение, представляющее собой эффективную площадь поперечного сечения атомного ядра, попав в которое налетающая частица вызывает ядерную реакцию или испытывает рассеяние.

В процессе экспериментальных исследований энергетической зависимости сечения взаимодействия частиц и различных атомных ядер было обнаружено, что при определенных энергиях значения сечений резко возрастают, а при дальнейшем увеличении энергии снова уменьшаются. Это явление называется резонансом.

При взаимодействии нейтрона и ядер могут протекать следующие реакции: упругое рассеяние, неупругое рассеяние, радиационный захват, деление. Вероятность протекания определенной реакции характеризуется микроскопическими сечениями. В зависимости от энергии нейтрона сечения могут изменятся. Так, в области быстрых нейтронов сечение радиационного захвата примерно в 100 раз меньше сечения захвата тепловых нейтронов. Сечение упругого рассеяния, как правило, почти постоянное для энергии выше 1 эВ.



Наряду с микроскопическими сечениями на практике используются также макроскопические сечения, под которыми понимают вероятность взаимодействия частицы в единице объема вещества. Если в единице объема число ядер определенного типа есть N, то макроскопическое сечение = микроскопическое сечение =N. Как и микроскопическое, макроскопическое сечение также характеризует определенный тип ядерной реакции.

Заключение


Более чем за 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира с суммарной энергетической модностью около 300 млн. кВт. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания (с этой точки зрения она может рассматриваться как экологически чистая), основными недостатками потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии (типа Чернобыльской или на американской станции Тримайл Айленд) и проблема переработки использованного ядерного топлива. Остановимся сначала на преимуществах. Рентабельность атомной энергетики складывается из нескольких составляющих. Одна из них независимость от транспортировки топлива. Если для электростанции мощностью 1 млн. кВт требуется в год около 2 млн. т.у.т. (или около 5 млн. низкосортного угля), то для блока ВВЭР-1000 понадобится доставить не более 30 т. обогащенного урана, что практически сводит к нулю расходы на перевозку топлива (на угольных станциях эти расходы составляют до 50% себестоимости). Использование ядерного топлива для производства энергии не требует кислорода и не сопровождается постоянным выбросом продуктов сгорания, что, соответственно, не потребует строительства сооружений для очистки выбросов в атмосферу. Города, находящиеся вблизи атомных станций, являются в основном экологически чистыми зелеными городами во всех странах мира, а если это не так, то это происходит из-за влияния других производств и объектов, расположенных на этой же территории. В этом отношении ТЭС дают совсем иную картину. Анализ экологической ситуации в России показывает, что на долю ТЭС приходится более 25% всех вредных выбросов в атмосферу. Около 60% выбросов ТЭС приходится на европейскую часть и Урал, где экологическая нагрузка существенно превышает предельную. Наиболее тяжелая экологическая ситуация сложилась в Уральском, Центральном и Поволжском районах, где нагрузки, создаваемые выпадением серы и азота, в некоторых местах превышают критические в 2-2,5 раза. К недостаткам ядерной энергетики следует отнести потенциальную опасность радиоактивного заражения окружающей среды при тяжелых авариях типа Чернобыльской. Сейчас на АЭС, использующих реакторы типа Чернобыльского (РБМК), приняты меры дополнительной безопасности, которые, по заключению МАГАТЭ (Международного агентства по атомной энергии), полностью исключают аварию подобной тяжести: по мере выработки проектного ресурса такие реакторы должны быть заменены реакторами нового поколения повышенной безопасности. Тем не менее в общественном мнении перелом по отношению к безопасному использованию атомной энергии произойдет, по-видимому, не скоро. Проблема утилизации радиоактивных отходов стоит очень остро для всего мирового сообщества. Сейчас уже существуют методы остекловывания, битумирования и цементирования радиоактивных отходов АЭС, но требуются территории для сооружения могильников, куда будут помещаться эти отходы на вечное хранение. Страны с малой территорией и большой плотностью населения испытывают серьезные трудности при решении этой проблемы.

Итак, плюсы:

+ дешевое электричество, гораздо дешевле чем ТЭС и ГЭС;

+ большое кол-во рабочих мест, маленькие станции не строят;

+ неограниченный ресурс работы, в сравнении с другими типами АЭС может служить намного дольше;

+ нет ущерба для окружающей среды в месте строительства: леса не выламываем, рыбу не губим, парки культуры и зодчества не затопляем, небо не коптим.

Минусы:

- наличие квалифицированного персонала, который где-то надо обучить;

- аварийная нестабильность, если жахнет, то даже в простынь завернуться не успеешь;

- необходимость утилизации ядерного сырья, то есть его надо вывозить, а значит строить хорошие дороги, налаживать инфраструктуру связи.


Список источников


1. Г.Кесслер «Ядерная энергетика» Москва :Энергоиздат, 1986 г.

2. Т.Х.Маргулова «Атомная энергетика сегодня и завтра» Москва: Высшая школа, 1989 г.

3. В.П.Кащеев «Ядерные энергетические установки» Минск: Вышейша школа, 1989 г.

4. Дж.Коллиер, Дж.Хьюитт «Введение в ядерную энергетику» Москва: Энергоатомиздат, 1989 г.



5. Википедия. ru.wikipedia.org


Похожие:

«Деление ядер. Ядерные превращения.» icon«Ядерные превращения. Деление ядер» студентка У4-02 Галуева Д. О

«Деление ядер. Ядерные превращения.» iconФизик-атомщик История профессии
Ядерная (атомная) физика — раздел физики, в котором изучаются структура и свойства атомных ядер и их превращения — радиоактивный...
«Деление ядер. Ядерные превращения.» icon«Ядерные превращения. Деления Ядер»

«Деление ядер. Ядерные превращения.» iconКогда было открыто деление ядер урана при бомбардировке их нейтронами?
Почему деление ядер может начаться только тогда, когда оно деформируется под действием поглощенного им нейтрона?
«Деление ядер. Ядерные превращения.» iconДеление ядер урана. Цепная реакция Цель: сформировать у учащихся представление о делении ядер урана. Задачи
...
«Деление ядер. Ядерные превращения.» iconОсновные состояния и спин-изоспиновые возбуждения атомных ядер 23
Микроскопические ядерные данные и расчеты нуклеосинтеза элементов в Сверхновых II типа 201
«Деление ядер. Ядерные превращения.» iconУрок по физике в 9 классе «Энергия связи атомных ядер»
Цель урока: ознакомить учащихся с понятием энергии связи атомных ядер, сформировать умение определять энергию связи и энергетический...
«Деление ядер. Ядерные превращения.» iconДеление ядер урана
Оборудование: компьютер, проекционная система, презентация урока, дидактический материал
«Деление ядер. Ядерные превращения.» iconАтомно-молекулярное учение и его законы
Химия наука о веществах, изучающая их состав, строение, свойства, а также превращения веществ, на сопровождающиеся изменением состава...
«Деление ядер. Ядерные превращения.» iconПриложение Тест «Деление ядер урана. Цепные и термоядерные реакции.»
Какие вещества из перечисленных могут быть использованы в качестве теплоносителей?
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org