Билет №6 Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления. Алгоритмы перевода чисел из одной системы счисления в другую. Числа записываются с использованием особых знаковых систем



Скачать 65.82 Kb.
Дата07.11.2012
Размер65.82 Kb.
ТипДокументы
Билет № 6

1. Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления. Алгоритмы перевода чисел из одной системы счисления в другую.
Числа записываются с использованием особых знаковых систем, которые называются системами счисления. Все системы счисления делятся на позиционные и непозиционные.

Система счисления – это способ записи чисел с помощью специальных знаков – цифр.

Числа:
123, 45678, 1010011, CXL

Цифры:
0, 1, 2, … I, V, X, L, …

Алфавит – это набор цифр. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Типы систем счисления:

    • непозиционные – значение цифры не зависит от ее места (позиции) в записи числа;

    • позиционные – зависит от ее места (позиции) в записи числа.

Непозиционные системы

Унарная – одна цифра обозначает единицу (1 день,
1 камень, 1 баран, …)

Римская:
I – 1 (палец), V – 5 (раскрытая ладонь, 5 пальцев),
X – 10 (две ладони), L – 50,
C – 100 (Centum), D – 500 (Demimille),
M – 1000 (Mille)

Алфавитные системы счисления. Более совершенными непозиционными системами счисления были алфавитные системы. К числу таких систем счисления относились греческая, славянская, финикийская и другие. В них числа от 1 до 9, целые количества десятков (от 10 до 90) и целые количества сотен (от 100 до 900) обозначались буквами алфавита.

Позиционная система:

значение цифры определяется ее позицией в записи числа.

Основные достоинства любой позиционной системы счисления — простота выполнения арифметических операций и ограниченное количество символов (цифр), необходимых для записи любых чисел.

Десятичная система:
первоначально – счет на пальцах
изобретена в Индии, заимствована арабами, завезена в Европу

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Основание (количество цифр): 10

Десятичная система характеризуется тем, что в ней 10 единиц какого-либо разряда образуют единицу следующего старшего разряда. Другими словами, единицы различных разрядов представляют собой различные степени числа 10. Числа позиционной системы счисления можно записать в развернутой форме:


2 1 0


разряды

3 7 8 = 3·102 + 7·101 + 8·100

300 70 8
Пример.
Десятичное число А10=4718,63 в развернутой форме запишется так:

А10=4·103+7·102+1·101+8·100+6·10-1+3·10-2

Другие позиционные системы:

    • двенадцатеричная (1 фут = 12 дюймов, 1 шиллинг = 12 пенсов)

    • двадцатеричная (1 франк = 20 су)

    • шестидесятеричная (1 минута = 60 секунд, 1 час = 60 минут)

    • двоичная, восьмеричная, шестнадцатеричная (информатика)

Двоичная система счисления.

        В двоичной системе счисления основание 2. Двоичное число представляет собой цепочку из нулей и единиц. При этом оно имеет достаточно большое число разрядов. Быстрый рост числа разрядов — самый существенный недостаток двоичной системы счисления.

        Записав двоичное число А2=1001,1 в развернутом виде и произведя вычисления, получим это число, выраженное в десятичной системе счисления:

А2=1·23+0·22+0·21+1·20+1·2-1 = 8+1+0,5 = 9,510

Восьмеричная система счисления.

Основание: 8.

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7.

Записав восьмеричное число А8=7764,1 в развернутом виде и произведя вычисления, получим это число, выраженное в десятичной системе счисления:

А8=7·83+7·82+6·81+4·80+1·8-1 = 3584 + 448 + 48 + 4 + 0,125 = 4084,12510

Шестнадцатеричная система счисления.

Основание: q=16.

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Здесь только десять цифр из шестнадцати имеют общепринятое обозначение 0,1, …9. Для записи остальных цифр (10, 11, 12, 13, 14 и 15) обычно используются первые пять букв латинского алфавита.

Таким образом, запись 3АF16 означает:

3АF16 = 3·162+10·161+15·160 = 768+160+15 = 94310.

Соответствие между первыми несколькими натуральными числами всех трех систем счисления представлено в таблице перевода:

Десятичная

система

Двоичная система

Восьмеричная система

Шестнадцатеричная система

0

0

0

0

1

1

1

1

2

10

2

2

3

11

3

3

4

100

4

4

5

101

5

5

6

110

6

6

7

111

7

7

8

1000

10

8

9

1001

11

9

10

1010

12

A

11

1011

13

B

12

1100

14

C

13

1101

15

D

14

1110

16

E

15

1111

17

F

16

10000

20

10


Переводы из 10-ой системы счисления в 2-ю, 8-ю, 16-ю и обратно.






Cистемы счисления в компьютерах (дополнительный материал)

В XVII веке немецкий ученый Готфрид Лейбниц предложил уникальную систему представления чисел с помощью всего двух символов – 0 и 1. Сегодня этот способ повсеместно используется в технике, в том числе и в компьютерах и называется дискретным.

Компьютер способен хранить только дискретно представленную информацию. Его память, как бы велика она ни была, состоит из отдельных битов, а значит, по своей сути дискретна.

Язык компьютера  — это язык двоичных чисел - двоичный алфавит, имеющий два знака, 1 и 0. Этим знакам в логике и технике приводят в соответствие понятия  — да и нет, истина и ложь, включено и выключено. Такой алфавит называют еще бинарным. В соответствии с этим введена и наименьшая единица информации  — бит (англ. bit, от binary  — двоичный и digit  — знак).
Одного бита информации достаточно, чтобы передать слово "да" или "нет", закодировать, например, состояние электролампочки. Кстати, на некоторых выключателях пишут "1  —включено" и "0  — выключено". Взгляд на выключатель снимает для нас неопределенность в его состоянии. При этом мы получаем количество информации, равное одному биту.

БИТ  — наименьшая единица измерения информации, соответствующая одному разряду машинного двоичного кода.

Двоичная кодировка (двоичная система счисления) имеет ряд преимуществ перед другими системами кодирования:

  1. Для ее реализации нужны технически не сложные элементы с двумя возможными состояниями (есть ток  — нет тока, намагничен  — не намагничен и т.д.).

  2. Представление информации посредством только двух состояний надежно и помехоустойчиво.

  3. Возможно применение особой алгебры логики (булевой алгебры) для выполнения логических преобразований информации.

  4. Двоичная арифметика намного проще десятичной. Двоичные таблицы сложения и умножения предельно просты.

  • Обработка информации в компьютере основана на обмене электрическими сигналами между различными устройствами машины. Признак наличия сигнала можно обозначить цифрой 1, признак отсутствия  — цифрой 0.

Похожие:

Билет №6 Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления. Алгоритмы перевода чисел из одной системы счисления в другую. Числа записываются с использованием особых знаковых систем iconФайловая оболочка far. Работа с файлами и каталогами
Системы счисления. Позиционные и непозиционные системы счисления. Смешанные системы счисления. Перевод чисел из одной системы счисления...
Билет №6 Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления. Алгоритмы перевода чисел из одной системы счисления в другую. Числа записываются с использованием особых знаковых систем iconПозиционные и непозиционные системы счисления. Построение натурального ряда в позиционных системах счисления
Система счисления (СС) – это способ записи чисел и соответствующие ему правила действий над ними
Билет №6 Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления. Алгоритмы перевода чисел из одной системы счисления в другую. Числа записываются с использованием особых знаковых систем icon«Системы счисления»
Определение цифр. Определение системы счисления. Определение развёрнутой формы числа. Виды систем счислений (позиционные и непозиционные)....
Билет №6 Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления. Алгоритмы перевода чисел из одной системы счисления в другую. Числа записываются с использованием особых знаковых систем iconУрок №1. Тема История систем счисления. Позиционные системы счисления
Ввести понятия: система счисления, позиционные непозиционные системы счисления, алфавит, основание, базис системы счисления. Указать...
Билет №6 Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления. Алгоритмы перевода чисел из одной системы счисления в другую. Числа записываются с использованием особых знаковых систем iconУрок №15 16 Тема Перевод чисел из одной позиционной системы счисления в другую
Цель: проверить знания учащихся по теме «Представление чисел в p-ичных системах», показать способы перевода чисел из одной системы...
Билет №6 Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления. Алгоритмы перевода чисел из одной системы счисления в другую. Числа записываются с использованием особых знаковых систем icon«Перевод чисел в позиционных системах счисления»
Цель: Проверка усвоения теоретических знаний по способам представления чисел в позиционных системах счисления, формирование умений...
Билет №6 Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления. Алгоритмы перевода чисел из одной системы счисления в другую. Числа записываются с использованием особых знаковых систем iconПереводы чисел из одной системы счисления в другую. Перевод целых чисел из десятичной системы счисления в любую другую
Последовательно выполнять деление данного числа и получаемых це­лых частных на основание новой системы счисления до тех пор, пока...
Билет №6 Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления. Алгоритмы перевода чисел из одной системы счисления в другую. Числа записываются с использованием особых знаковых систем iconПособие по решению задач по теме Системы счисления. §1Системы счисления, запись чисел в позиционных системах счисления
В современном мире известно множество способов представления чисел. Число можно представить группой символов некоторого алфавита
Билет №6 Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления. Алгоритмы перевода чисел из одной системы счисления в другую. Числа записываются с использованием особых знаковых систем iconУрок №13 14. Тема Представление чисел в p-ичных системах. Единственность представления чисел в позиционных счислениях
Цель урока: показать, как могут быть представлены числа в позиционных системах счисления, рассмотреть перевод целых и дробных чисел...
Билет №6 Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления. Алгоритмы перевода чисел из одной системы счисления в другую. Числа записываются с использованием особых знаковых систем iconКонспект урока перевод чисел из одной системы счисления в другую. Фио (полностью) Горбунова Татьяна Ивановна
Цель урока: Обобщить и систематизировать понятия по теме: «Системы счисления». Сформировать способность учащихся переводить числа...
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org