Методические указания рекомендованы к изданию кафедрой учетно-экономических дисциплин нф ргту, протокол от 2010г. №. Утверждены учебно-методическим советом нф гоу впо «ргтэу»



Скачать 251.25 Kb.
Дата08.10.2012
Размер251.25 Kb.
ТипМетодические указания
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение

высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ


(РГТЭУ)

НОВОСИБИРСКИЙ ФИЛИАЛ



Финансовая математика
Программа, методические указания и задания контрольной и самостоятельной работы для студентов заочной формы обучения специальности 080109 «Бухгалтерский учет, анализ и аудит»


Новосибирск 2010
Кафедра учетно–экономических дисциплин
Финансовая математика: Программа, методические указания и задания контрольной и самостоятельной работы для студентов заочной формы обучения специальности 080109 «Бухгалтерский учет, анализ и аудит»
. Составитель: доцент Вахромеева Т.В.. – Новосибирск: НФ ГОУ ВПО «РГТЭУ», 2010. – количество страниц.


Рецензент: Мамаева Ж.Г., к.э.н., завкафедрой учетно-экономических дисциплин НФ РГТУ.
Методические указания рекомендованы к изданию кафедрой учетно-экономических дисциплин НФ РГТУ, протокол от «__» _____ 2010г. № __.
Утверждены учебно-методическим советом НФ ГОУ ВПО «РГТЭУ», протокол от «__» _____ 2010г. № __.


















































1. Общие положения
Дисциплина Финансовая математика включена в региональный (вузовский) компонент цикла общематематических и естественно-научных дисциплин (ЕН.Р.06) и является дисциплиной по выбору для специальности 080109 «Бухгалтерский учет и аудит».
Пояснительная записка

Финансовая математика (техника финансовых и коммерческих расчетов) – новая дисциплина в университетах России. Появление ее связано с развитием рыночных отношений. Данный курс можно рассматривать как введение в финансовый анализ.

Предметом изучения дисциплины «Финансовая математика» является

количественный финансовый анализ для решения широкого круга задач от элементарного начисления процентов до анализа инвестиционных, кредитных и коммерческих операций.


Целью курса является помощь студентам овладением основами современных финансовых вычислений для применения полученных знаний при решении конкретных задач в области экономики.

В курсе рассматриваются основные понятия, которыми оперируют в финансовых вычислениях: процент, ставка процента, учетная ставка, современная (текущая стоимость платежа, методы наращения и дисконтирования платежей, рассматриваются принципы, лежащие в основе финансовых вычислений, современная практика расчетов, сферы их применения.

Курс основывается на знаниях математики в объеме средней школы, знании основ теории вероятностей, математической статистики, информатики.

Ниже приводится программа теоретического курса и задание контрольной работы, состоящее из пяти задач в каждом варианте. Номер варианта выбирается по последней цифре зачетной книжки студента.

Контрольная работа может быть выполнена в отдельной тетради или распечатана на компьютере. Решения задач должны сопровождаться краткими, но исчерпывающими пояснениями (аргументами).

В конце работы должен быть приведен список литературы в алфавитном порядке. На последней странице ставится подпись автора и дата.

Выполненная контрольная работа должна быть представлена в деканат заочного отделения не позднее чем за 10 дней до начала экзаменационной сессии. Контрольная работа, выполненная без соблюдений требований или не полностью, не зачитывается и возвращается студенту на доработку. В случае, если контрольная работа выполнена не по своему варианту, она не зачитывается и возвращается студенту для ее выполнения в соответствии с вариантом, указанным в таблице.

До начала сессии студент получает проверенную контрольную работу с исправлениями в тексте и замечаниями на полях, а также рецензию, в которой анализируются все ошибки и неточности, даются рекомендации по исправлению ошибок и выставляется оценка «зачтено» или «не зачтено». Оценка «зачтено» является допуском к зачету. Работа с оценкой «не зачтено», должна быть доработана и представлена на повторное рецензирование.

Цель выполнения контрольной работы: закрепление теоретических знаний и умение применять полученные теоретические знания при решении конкретных практических заданий
Объем дисциплины и виды учебной работы

по срокам и формам обучения (час)
Заочная форма обучения – 5,5 лет


Вид занятий

3 курс

Аудиторные занятия:

8

- лекции

4

- практические

4

Самостоятельная работа

49

Контрольная работа

1 (5 семестр)







Вид итогового контроля

Зачет



Заочная форма обучения – 3,5 года

(сокращенная подготовка на базе среднего профессионального образования)


Вид занятий

2 курс

Аудиторные занятия:




- лекции

4

- практические

2

Самостоятельная работа

51

Контрольная работа

1 (3 семестр)







Вид итогового контроля

Зачет



Распределение часов по темам и видам учебной работы



Наименование темы

дисциплины

Заочная форма обучения

5,5 лет

3,5 года

количество часов на изучение

Всего

По учебному плану

По в том числе

всего

в том числе

лекции

практические

СРС

лекции

практические

СРС

1.Цель, задачи содержание курса


2

-

-

2

2

-




2

2.Простые проценты

10

1

1

8

10

1

1

8

3.Сложные проценты

12

1

1

10

12

1

1

10

4.Потоки платежей.Рента

11

1

1

9

11

1




10

5.Начисление процентов в условиях инфляции и налогообложения

8

-

-

8

8

-

-

8

6.Кредиты



6

1

1

4

6

1




5

7.Практические приложения теории

8







8

8







8

Всего

57

4

4

49

57

4

2

51


СОДЕРЖАНИЕ КУРСА

Введение.

Предмет финансовой математики, ее место в экономическом и ком­мерческом образовании.

Тема 1. Наращение денежных сумм.

Простые проценты. Сложные проценты: начисление m раз в году, не­прерывное начисление. Сравнение формул наращения.

Тема 2. Дисконтирование денежных сумм.

Современная (приведенная) стоимость денег. Другие обратные зада­чи. Замена платежей и их консолидация.

Тема 3. Эффективная годовая процентная ставка. Инфляция. Номинальная и эффективная ставки. Учет инфляции при наращении денежных сумм.

Тема 4. Рента. Формулы наращения.

Поток платежей. Рента. Формулы наращения для годовой и общей

ренты.

Тема 5. Современная стоимость ренты. Стоимость годовой и общей ренты. Вечная рента.

Тема 6. Конверсия, консолидация рент.

Нахождение параметров ренты. Конверсия ренты. Консолидация

рент.

Тема 7. Кредит. Планы погашения кредита.

Кредит, основные понятия. Погашение займа одним платежом. По­гашение основного долга одним платежом. Погашение основного долга равными годовыми выплатами. Создание погасительного фон­да. Погашение потребительского кредита. Погашение ипотечной ссу­ды.

Тема 8. Конверсия, консолидация займов.

Финансовая эквивалентность займов. Конверсия займа. Консолида­ция займов.

Тема 9. Расчеты на компьютере.

Использование стандартных финансовых функций EXSEL.
Условные обозначения основных параметров в финансовых вычислениях:

Р–первоначальная сумма ссуды (текущая стоимость);

S- наращенная сумма долга );

I – процентные деньги (проценты);

i- процентная годовая ставки (простых или сложных дискретных процентов);

δ-годовая ставка при непрерывном начислении процентов;

t- период начисления (обычно так обозначается период в днях), срок ссуды;

d-учетная процентная годовая ставка;

j- номинальная ставка процентов;

f- номинальная учетная ставка процентов;

m- число периодов начисления процентов в году;

n- период начисления процентов в годах (срок ссуды в годах);

N- общий срок начисления процентов (число периодов начисления процентов за весь срок ссуды);

Kd- временная база при дисконтировании ;

Kn -временная база при наращении (число дней в год)

Iи- индекс инфляции;

r- брутто-ставка;

h- средний годовой темп инфляции;

Jр- индекс цен;

Ko- курс обмена (валюты в рубли) в начале операции;

K- курс обмена (валюты в рубли) в начале операции;

Sr- наращенная сумма в рублях.

Задачи контрольных работ

1-10
Задачи 1-10 имеют одну формулировку и отличаются только
параметром
i, задающим номер варианта и определяемым номером
зачетной книжки студента (смотрите ниже).

1-10. Рассчитайте, какая сумма будет на счете, если вклад 10000 руб. положен на 2,5 года под i процентов годовых, проценты слож­ные и начисляются:

а) раз в год;

б) раз в полугодие;

в) ежеквартально;

г) ежемесячно;

д) ежедневно;

е) непрерывно;

здесь i совпадает с последней цифрой номера зачетной книжки студента, если это цифра нуль, то i = 10%.

Задачи 11-20

Задачи 11 - 20 текстовые. Вариант определяется так: если по­следняя цифра номера Вашей зачетной книжки 1, то Вам надо решать задачу 11, если 2, то 12, и так далее, если номер оканчивается нулем, то задача Вашего варианта 20.

Задачи этого раздела соответствуют материалу глав 2 и 3 учебного пособия [1].

11. Какую сумму надо положить на депозит, чтобы через 3 года она выросла до 50000 руб. при годовой ставке 10%, начисление еже­месячное.

  1. Какая сумма предпочтительнее при ставке 11% годовых: $1000 сегодня или $1500 через три года? Проценты сложные, начис­ление раз в квартал.

  2. Платеж в 10000 руб. со сроком уплаты через полгода заме­нить платежом со сроком уплаты: а) 3 месяца; б) 1 год. Используется процентная ставка 10% годовых, проценты сложные, начисление ежемесячное.

  3. Два платежа в 3000 руб., 4000 руб. со сроками выплат 1 и 2 года соответственно заменяются одним платежом через 2,5 года.

Найти величину платежа. Используется сложная процентная ставка 12% годовых, начисление ежеквартальное.

  1. Что выгодней: получить 20000 руб. через два года или по 9500 руб. после первого и второго годов. Проценты сложные, начис­ление по полугодиям, годовая ставка 10%.

  2. Банк предлагает клиентам помещать деньги на депозит на один год под 30% годовых с ежеквартальным начислением сложных процентов. Найти реальную доходность такого предложения, если годовая инфляция составляет 18%.

  3. Определить доходность помещения средств в банк под 80% годовых, проценты сложные, начисление раз в месяц, если уровень инфляции за год 50%.

  4. В долг на 2 года предоставлена сумма в 20000 руб. с услови­ем возврата 30000 руб. Инфляция составляет 2% в месяц. Найти эф­фективную годовую ставку в этой финансовой сделке.

  5. За два года сумма в 10000 руб. внесенная на счет в банке воз­росла до 20000 руб. Какова эффективная годовая ставка этой опера­ции, если месячная инфляция составляет 1%?

20.Определить доходность (эффективную годовую ставку) по­мещения средств в банк под 70% годовых, проценты сложные, на­числение раз в месяц, если уровень инфляции за год 50%.

Задачи 21-30

В задачах 21 - 30 и 31 - 40 вариант определяется номером зачет­ной книжки подобно задачам 1-10.

21-30. Рассчитайте, какая сумма будет через 4 года на счете, если в конце каждого месяца вносится по 1000 руб. Проценты сложные, начисление ежемесячное, годовая ставка i процентов, i совпадает с последней цифрой номера зачетной книжки студента, если эта цифра нуль, то i = 10%.

Задачи 31-40

31- 40. Заменить ренту, полученную в своей задаче 21- 30 на двухлетнюю годовую ренту постнумерандо при тех же банковских условиях. Определить величину годового взноса.

Задачи 41-50

41- 50. Заем в 200000 руб. выдан на 4 года под k % годовых. Для Вашего варианта k = 2i, где i - последняя цифра номера Вашей зачетной книжки, если последняя цифра нуль, то i =10%. Начисление ежегодное. Составить семь планов погашения займа, найти совре­менную величину каждого потока выплат. Заполнить таблицу:

Выплаты год

1-й

2-й

3-й

4-й

Суммарная величина

1. Погашение одним платежом в конце периода
















2. Погашение основного долга одним платежом
















3. Погашение основного долга равными годовыми выплатами
















4. Погашение займа равными годовыми выплатами
















5. Создание погасительного фонда (банковская ставка 30% в год)
















6. Погашение потребительского кредита (выплата 1 раз в год в начале года)
















7. Погашение ипотечной ссуды (размер ежемесячной выплаты)

















Методические рекомендации по выполнению контрольной работы.
Для решения задачи 1 удобнее воспользоваться вычислениями на компьютере

Для работы будем использовать мастер функций. Будем выполнять последовательно следующие действия:

  1. Помещаем курсор в ту ячейку, в которую надо вывести результат;

  2. Щелкаем мышкой на кнопке fx на панели управления. В раскрывшемся окне диалога выбора в левом окне сделать выбор категории функции “финансовые”. После чего в правом, прокручивая список, находим требуемую функцию и щелкаем по кнопке «ОК» (“Далее”);

  3. В раскрывшемся диалоговом окне ввода аргументов функции вводим ее аргументы, при этом программа дает нам подсказку о смысле вводимого аргумента и подсказывает результат;

  4. Закончив редактирование и уточнение аргументов, щелкаем на кнопке «ОК» (“Готово”), диалоговое окно закроется, а в ячейке напечатается результат.

Рассмотрим четыре общеупотребительные функции.

Ответы разбираемых примеров выводите в ячейки а2, f2, зарезервировав первую

строку для создания шаблона (заголовков).

  1. Определение будущего значения вклада (функция БС). Аргументами функции являются

- норма или ставка (процентная ставка за один период начисления – в традиционных обозначениях – i/m)/, это обязательный аргумент;

- число периодов начисления за весь срок, обязательный аргумент (его обозначают кпер), в традиционных обозначениях m;

- выплата, постоянная сумма, вносимая (изымаемая) в начале или в конце каждого периода начисления. Ей приписывается знак минус, если выплачиваем мы (плата от нас”) и плюс, если выплачивают нам (платак нам”). Необязательный аргумент;

- нз – единовременный взнос в начале срока . Ему приписывается знак минус (плата от нас”). Необязательный аргумент, но один из двух аргументов выплата или нз должен присутствовать;

- тип, это число 0, если платеж вносится в конце каждого периода начисления (постнумерандо), или 1, если платеж вностися в начале каждого периода начисления (пренумерандо). Необязательный аргумент, если он опущен, то считается равным 0 по умолчанию.

После выполнения действий 1-2 в итоговой строке Значение автоматически показывается расчетная величина. После нажатия кнопки ОК эта величина показывается в выделенной ячейке Таблицы Excel.

Пример 1. По вкладу 900 тыс.руб.проценты начисляются ежеквартально из расчета 9% годовых. Какая сумма будет на счете через 19 лет?

Решение. Вызвав окно диалога для ввода аргументов функции БЗ, вводим 9%/4,19*4; пропускаем позицию;-900000. Ответ 4882640 р.

Пример 2. Взносы на счета составляют 200 000 рублей в начале каждого года. Сколько будет на счете через 7 лет при ставке 10%? Ответ 2 087 177, 62 р.

Решение. Для функции БС вводим последовательно аргументы :

Норма 10%; кпер 7; выплата – 200000; ; тип 1. Пустое место означает пропуск позиции.

Для решения задачи 2 необходимо изучить материал глав 2 и 3 учебного пособия [1].

Задачи 3, 4 . Рента (аннуитет) – это последовательность одинаковых платежей через равные промежутки времени. Параметры ренты:

R- величина годового платежа

r – период ренты, временной интервал между двумя последовательными платежами;

n – срок ренты, время в годах от начала первого до конца последнего периода;

i - годовая процентная ставка наращения;

m- количество начислений процентов в году;

p- количество платежей в году;

Рента называется обыкновенной (постнумерандо), если платежи производятся в конце каждого периода.

Обобщенные параметры ренты:

S – наращенная сумма, это сумма всех членов ренты с начисленными процентами;

А- современная (приведенная) стоимость, это сумма всех членов ренты, дисконтированных на определенный момент времени.

Формулы для решения задач

S=- наращенная сумма ренты на конец срока n по годовой ставке наращения i и при годовом платеже R.
S= - сумма ренты при выплатах p раз в год и начислении процентов m раз в год по номинальной годовой ставке i, сроком n и при годовом платеже R.

Задача 5. Перед решением этой задачи ознакомьтесь с различными способами погашения кредитов.
Кредитные расчеты

§ 1. Основные понятия

Кредит (заем, ссуда) - финансовая операция, заключающаяся в том, что в долг берутся деньги с условием их возврата в назначенным срок и уплаты процентов по ним. Тот, кто дает деньги, называется кредитор, кто берет - дебитор (заемщик). Сумму, полученную в долг, обозначаем D, будем называть ее - основной долг: q - ставка процен­тов по условиям займа, как правило, проценты сложные. Способы погашения займа многообразны, они устанавливаются договором между кредитором и заемщиком. Рассмотрим некоторые из них.

§ 2. Погашение займа одним платежом в конце периода

Пусть заем D выдан на t лет под q процентов в год, проценты сложные. Тогда за t лет долг вырастет до величины D(l+q)1, это и есть размер платежа.

Пример 1. Пусть D=5000 руб., q=0,l, t=5. Найти платеж, пога­шающий заем.

Решение. Искомая сумма составляет 5000(1+0,1)5 =8052,55

§ 3. Погашение основного долга одним платежом

За первый год долг возрастает до величины D+qD. Процентные деньги qD выплачиваются, а величина долга становится опять равной D. Так будем поступать и в последующие годы. В последний год вы­плата составляет D+qD.

План погашения задолженности при этих условиях и данных примера 1 приведен в таблице I.

§ 4. Погашение основного долга равными годовыми выплатами

В конце каждого года выплачивается сумма плюс процентные

деньги за этот год; то есть, после первого года выплачивается сумма

+ qD , после второго + q(D-) и так далее до последнего платежа +q

План погашения задолженности в этом случае для данных при­мера 1 приведен в таблице 1.

§ 5. Погашение займа равными годовыми выплатами

В конце каждого года выплачивается одинаковая сумма R, то есть, имеем годовую ренту длительностью t лет и членом равным R. Современную величину этой ренты приравниваем к ос­новному долгу:



Отсюда найдем R.

§ 6. Создание погасительного фонда

Погашение кредита осуществляется в конце срока одной выпла­той. Для формирования этой выплаты деньги накапливаются на счете в банке: процентная годовая ставка - i, начисление раз в год, ежегод­ный взнос R. Через t лет наращенная сумма будет



R - пока неизвестная величина. Долг возрастет до величины

D(1+q)t, поэтому

D(1+q)t=

Из этого уравнения находим величину ежегодного взноса R.

По такой же схеме строится уравнение для R в случае общей ренты.

Процентная станка i в банке должна быть больше, чем кредитная
ставка q, только при этом условии имеет смысл создавать погаси­тельный фонд.

Для данных примера 1 и при i=0,15 план погашения долга приве­ден в таблице 1.

§ 7. Погашение потребительского кредита

Данная операция применяется, например, при покупке какой-либо вещи в кредит.

Сразу на всю сумму кредита начисляются простые проценты, они прибавляются к величине самого кредита, получается сумма D( I +tq). Если в договоре о кредите предусмотрено m выплат в год, то разовая выплата будет равна D( I +tq) / mt.

Для данных примера 1 получим, что годовой платеж - 1500руб., а месячный - 125 руб.

§ 8. Погашение ипотечной ссуды

Такая ссуда выдается на большой срок под небольшие проценты, например, для покупки жилья. Традиционная ипотечная ссуда пога­шается равными ежемесячными взносами, начисление процентов то­же ежемесячное, то есть, имеем ренту, у которой m=р=12, суммар­ный годовой платеж R пока неизвестен. Современную величину этой ренты приравниваем к ссуде D, из полученного уравнения найдем R и ежемесячный взнос R/12



Для данных примера 1 ежемесячный платеж составляет 106,2руб.

Таблица 1

Год

1

2

3

4

5

Выплаты §2

-

-

-

-

8052,6

§3

500

500

500

500

5500

§4

1500

1400

1300

1200

1100

§5

1319

1319

1319

1319

1319

§6(i=0,15)

1194,3

1194,3

1194,3

1194,3

1194,3

§7

1500

1500

1500

1500

1500

§8

1274,8

1274,8

1274,8

1274,8

1274,8



Конверсия, консолидация займов

Изменение условий погашения кредитов называется конверсией.

Два плана погашения одного займа эквивалентны в финансовом отношении, если современная величина всех выплат по одному пла­ну равна современной величине выплат по другому плацу.

Пример 2. Эквивалентны ли планы погашения долга D=5000p, выданного на 5 лет под 10% в год, описанные в §2-8?

Решение: Найдем современные величины всех выплат по каждо­му из планов.

В §2 одна выплата, дисконтирование дает: A2=D=5000.

В §5-7 выплаты образуют годовую ренту, современные величины находим по формуле

А5=5000, А6=4527, A7=5686.

Тем самым, ответ на вопрос, поставленный в примере 2, -отри­цательный.

Иногда, когда часть выплат уже осуществлена, план погашения займа приходится менять. В этом случае определяется сумма выпла­ченного основного долга и величина непогашенной его части. По­следняя сумма рассматривается как новый долг, подлежащий уплате на новых условиях.

В финансовой практике возникают ситуации, когда несколько займов одного заемщика объединяются в один заем. Эта операция называется консолидацией займов. В этом случае, прежде всего, на­ходят остатки каждого долга. Просуммировав их, получают объеди­ненный долг и составляют новый план погашения.
Самостоятельная работа студентов


Наименование темы дисциплины

Источники, рекомендуемые для самостоятельной работы

Цель, задачи и содержание курса

[1]глава 1 , [2], [3]

Простые проценты

[1] глава 2 ,[2] , [3]

Сложные проценты

[1] глава 3, [2], [3]

Начисление процентов в условиях инфляции и налогообложения

[1] глава 4, (4.5), [2]

Потоки платежей

[1] глава 5,6., [2], [3]

Практическое приложение теории






Итоговый контроль

Итоговый контроль осуществляется в форме зачета

Вопросы для подготовки к зачету


  1. Цель и задачи курса

  2. Необходимость учета фактора времени в финансовых расчетах

  3. Проценты. Единицы измерения процентов.

  4. Практика начисления простых процентов при различной величине

  5. временной базы.

  6. Различие между простыми и сложными ставками процентов.

  7. Дисконтирование. Виды дисконтирования.

  8. Сущность понятия «дисконт».

  9. Прямая и обратная задачи в зависимости от применяемой ставки

  10. Сравнение простой ставки наращения и простой учетной ставки

  11. Номинальная и эффективная ставки процентов

  12. Начисление процентов при дробном числе периодов начисления

  13. Определения с сущность «приведения суммы»

  14. Номинальная и эффективные учетные ставки

  15. Непрерывные проценты. Наращение и дисконтирование. Сила роста.

  16. Связь дискретных и непрерывных процентных ставок.

  17. Вывод формул всех известных процентных ставок

  18. Расчет срока ссуды и процентных ставок

  19. Индекс покупательской способности как показатель инфляции

  20. Наращение по сложным процентам с учетом инфляции

  21. Учет налогов

  22. Потоки платежей. Определение и характеристики

  23. Финансовые ренты, их виды и классификация

  24. Формулы наращенной суммы для годовой ренты

  25. Формулы наращенной суммы для р-срочной ренты

  26. Расчет современной величины для обычной годовой и р-срочной ренты

  27. Зависимость между современной величиной и наращенной суммой ренты

  28. Конверсия валюты и начисление процентов .

  29. Контур финансовой операции при погашении задолженности частями.

  30. Кредиты. Способы погашения кредитов.

  31. Ипотечное кредитование.

  32. Конверсия и консолидация займов.



Литература
1.Четыркин Е.М. Методы финансовых и коммерческих расче­тов. - М.: Дело, с 2004.

2.Бочаров П.П. Финансовая математика.- М.:Гардарики, с 2002.

3.Ковалев В.В. Сборник задач по финансовому анализу: учебное пособие. –

М.: Финансы и статистика, с 2004.

4.Лукашин Ю.П. Финансовая математика. Учебно-практическое пособие. М.: ММИЭИФП, с 2004.

5.Малыхин В.И. Финансовая математика. - М.: ЮНИТИ, с 2004.

Приложение 1

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение

высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ


(РГТЭУ)

НОВОСИБИРСКИЙ ФИЛИАЛ


Заочное отделение

Кафедра________________________

Регистрационный номер__________


Контрольная работа

по__________________________________

(название дисциплины)

Вариант № __


Выполнил студент___ курса, ____ группы

Специальность ______________________

ФИО студента_______________________

Рецензент (ФИО, должность) __________
Новосибирск 2010

Приложение 2
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение

высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ


(РГТЭУ)

НОВОСИБИРСКИЙ ФИЛИАЛ


Регистрационный номер____________

Факультет ТЭФ (заочное отделение)

Группа _______ Курс ____________

Студент ______________________________________________________________

Шифр_______ Номер контрольной работы ________________________

Дисциплина__________________________________________________

Рецензент____________________________________________________

Дата получения контрольной работы______________________________

Дата возвращения контрольной работы____________________________

Оценка __________________(зачтено, незачтено)

Подпись преподавателя_____________________

Похожие:

Методические указания рекомендованы к изданию кафедрой учетно-экономических дисциплин нф ргту, протокол от 2010г. №. Утверждены учебно-методическим советом нф гоу впо «ргтэу» iconМетодические указания к выполнению контрольной работы по физике для студентов инженерных специальностей заочного отделения
...
Методические указания рекомендованы к изданию кафедрой учетно-экономических дисциплин нф ргту, протокол от 2010г. №. Утверждены учебно-методическим советом нф гоу впо «ргтэу» iconМетодические указания по дисциплине «Инженерная графика»
Методические указания написаны в соответствии с утвержденной программой, рекомендованы кафедрой проектирования оптических приборов...
Методические указания рекомендованы к изданию кафедрой учетно-экономических дисциплин нф ргту, протокол от 2010г. №. Утверждены учебно-методическим советом нф гоу впо «ргтэу» iconРис. Теоретический материал (фрагмент)
Рекомендован учебно-методическим советом «мати» – ргту им. К. Э. Циолковского в качестве учебного пособия по дисциплине «Элементарная...
Методические указания рекомендованы к изданию кафедрой учетно-экономических дисциплин нф ргту, протокол от 2010г. №. Утверждены учебно-методическим советом нф гоу впо «ргтэу» iconМетодические указания для выполнения лабораторных работ по дисциплине «Аналитическая химия»
Титримитрический анализ: Методические указания / С. Ф. Лапина. Братск: гоу впо «Бргту», 2004. 44 с
Методические указания рекомендованы к изданию кафедрой учетно-экономических дисциплин нф ргту, протокол от 2010г. №. Утверждены учебно-методическим советом нф гоу впо «ргтэу» iconУчебная программа для специальности: 1-21 02 01 «Философия» Срок действия учебной программы до 2011 г
Научно-методическим советом по гуманитарным специальностям учебно-методического объединения вузов Республики Беларусь по гуманитарному...
Методические указания рекомендованы к изданию кафедрой учетно-экономических дисциплин нф ргту, протокол от 2010г. №. Утверждены учебно-методическим советом нф гоу впо «ргтэу» iconКоторые могут оказать существенное влияние на стоимость ценных бумаг акционерного общества
Советом директоров ОАО «Камов» 08. 04. 2010г было принято решение (протокол заседания Совета директоров №15 от 12. 04. 2010г)
Методические указания рекомендованы к изданию кафедрой учетно-экономических дисциплин нф ргту, протокол от 2010г. №. Утверждены учебно-методическим советом нф гоу впо «ргтэу» iconМетодические указания к лабораторной работе по дисциплине
Операции с таблицами баз данных в среде Delphi: методические указания к лабораторной работе по дисциплине "Информационное обеспечение...
Методические указания рекомендованы к изданию кафедрой учетно-экономических дисциплин нф ргту, протокол от 2010г. №. Утверждены учебно-методическим советом нф гоу впо «ргтэу» iconМетодические указания к лабораторной работе по курсу
Параметрическая оптимизация радиоэлектронных схем: методические указания к лабораторной работе по курсу Компьютерный анализ электронных...
Методические указания рекомендованы к изданию кафедрой учетно-экономических дисциплин нф ргту, протокол от 2010г. №. Утверждены учебно-методическим советом нф гоу впо «ргтэу» iconМетодические указания по выполнению индивидуального домашнего задания
Методические указания рассмотрены и утверждены на заседании кафедры экономико-математических методов и прогнозирования
Методические указания рекомендованы к изданию кафедрой учетно-экономических дисциплин нф ргту, протокол от 2010г. №. Утверждены учебно-методическим советом нф гоу впо «ргтэу» iconМетодические указания для студентов Факультета математики и компьютерных наук издательство тюменского государственного ниверситета
Методические указания утверждены на заседании кафедры математического моделирования
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org