Лекция Предмет курса «Процессы и аппараты»



страница1/5
Дата23.10.2014
Размер0.77 Mb.
ТипЛекция
  1   2   3   4   5
Вводная часть

Лекция 1.

Предмет курса «Процессы и аппараты»

В химической промышленности осуществляются разнообразные процессы, в которых исходные материалы в результате химического взаимодействия претерпевают глубокие превращения, сопровождающиеся изменением агрегатного состояния, внутренней структуры и состава веществ. Наряду с химическими реакциями, являющимися основой химико-технологических процессов, последние обычно включают многочисленные физические (в том числе механические) и физико-химические процессы. К таким процессам относятся: перемещение жидкостей и твердых материалов, измельчение и классификация последних, сжатие и транспортирование газов, нагревание и охлаждение веществ, их перемешивание, разделение жидких и газовых неоднородных смесей, выпаривание растворов, сушка материалов и др. При этом способ проведения указанных процессов часто определяет возможность осуществления, эффективность и рентабельность производственного процесса в целом.

Таким образом, технология производства самых разнообразных химических продуктов и материалов (кислот, щелочей, солей, минеральных удобрений, красителей, полимерных и синтетических материалов, пластических масс и т. д.) включает ряд однотипных физических и физико-химических процессов, характеризуемых общими закономерностями. Эти процессы в различных производствах проводятся в аналогичных по принципу действия машинах и аппаратах.

Процессы и аппараты, общие для различных отраслей химической технологии, получили название основных процессов и аппаратов. Например, одним из основных процессов является перегонка (ректификация) — процесс разделения жидких смесей, основанный на различии давления паров компонентов смеси. Этот процесс применяется для разделения жидкого воздуха в производстве кислорода, разделения воды и азотной кислоты в производстве азотной кислоты, разделения сложной смеси органических продуктов для получения дивинила в производстве синтетического каучука и во многих других химических производствах.

К числу основных аппаратов относятся тарельчатые и насадочные колонны, широко применяемые не только для проведения процессов ректификации, но также для извлечения компонентов из газовых или паровых смесей жидким поглотителем (процессы абсорбции), очистки газов от пыли и т. д.

Насосы и компрессоры, фильтры и центрифуги, теплообменники и сушилки также относятся к числу основных аппаратов и машин, которые в разных сочетаниях составляют типовое оборудование большинства химических производств.

В курсе «Процессы и аппараты» изучаются теория основных процессов, принципы устройства и методы расчета аппаратов и машин, используемых для проведения этих процессов. Анализ закономерностей основных процессов и разработка обобщенных методов расчета аппаратов производятся исходя из фундаментальных законов физики, химии, физической химии, термодинамики, экономики и других наук.

Курс строится на основе выявления аналогии внешне разнородных процессов и аппаратов независимо от отрасли химической промышленности, в которой они используются.

В этом курсе изучаются также закономерности переход а от лабораторных процессов и аппаратов к промышленным. Знание закономерностей перехода от одного масштаба к другому и переноса данных, полученных на одной системе — модели, на другую систему, представляющую собой объект натуральной величины (моделирование), необходимо для проектирования большинства современных, обычно многотоннажных, производственных процессов химической технологии. Так, например, химический процесс, изученный в лаборатории (в малом масштабе) с точки зрения механизма реакции, закономерностей ее протекания во времени и т. п., далеко не всегда может быть воспроизведен с теми же показателями в крупном масштабе. Для осуществления процесса в промышленном реакторе помимо химической сущности процесса должны быть установлены его параметры в зависимости от конструкции аппарата, структуры потоков и режимов их движения, скорости переноса тепла и массы и др. Совокупное влияние этих факторов определяет так называемую макрокинетику процесса, связанную с массовым движением макрочастиц — пузырей, капель, струй и т. п.

В науке о процессах и аппаратах изучается макрокинетика основных процессов химической технологии. При этом используются данные по микрокинетике, характеризуемой элементарными, независимо протекающими на молекулярном уровне процессами, такими, как теплопроводность, молекулярная диффузия и т. д., которые рассматриваются в физике, физической химии, химической термодинамике и других науках.

Сказанным определяется значение курса «Процессы и аппараты» для изучения не только физических, но и химических промышленных процессов, а также аппаратов для их проведения, причем проблемы масштабирования и моделирования особенно интенсивно разрабатываются в последние годы.

Таким образом, курс «Процессы и аппараты» является инженерной дисциплиной, представляющей собой важный раздел теоретических основ химической технологии. Этот курс можно охарактеризовать как составную часть комплекса дисциплин, освещающих различные аспекты химической технологии как науки. К таким дисциплинам относятся курсы общей химической технологии и технологии конкретных отраслей химической промышленности, для которых производится подготовка инженеров (химиков-технологов). В частности, с курсом «Процессы и аппараты» тесно связан учебный курс «Общая химическая технология», в котором также изучаются общие закономерности химической технологии путем обобщения принципов построения производственных схем химико-технологических процессов и анализа вопросов наиболее рационального, комплексного использования сырья, энергии и др. Оба курса освещают общие начала, которые должны быть синтетически использованы при разработке наиболее эффективных с технико-экономической точки зрения процессов производства в любых отраслях химической технологии.

Применение методов и технических средств современной кибернетики значительно облегчает моделирование химико-технологических процессов, включая математическое моделирование, осуществляемое при помощи электронных вычислительных машин. Поэтому связь курса «Процессы и аппараты» с курсом «Химическая кибернетика» является наиболее плодотворной для изучения и проектирования сложных, в том числе химических, процессов химической технологии.



Классификация основных процессов

Классификация основных процессов химической технологии может быть проведена на основе различных признаков.

В зависимости от основных законов, определяющих скорость процессов, различают:

1. Гидромеханические процессы, скорость которых определяется законами гидродинамики — науки о движении жидкостей и газов. К этим процессам относятся перемещение жидкостей, сжатие и перемещение газов, разделение жидких и газовых неоднородных систем в поле сил тяжести (отстаивание), в поле центробежных сил (центрифугирование), а также под действием разности давлений при движении через пористый слой (фильтрование) и перемешивание жидкостей.

2. Тепловые процессы, протекающие со скоростью, определяемой законами теплопередачи — науки о способах распространения тепла. Такими процессами являются нагревание, охлаждение, выпаривание и конденсация паров. К тепловым процессам могут быть отнесены и процессы охлаждения до температур более низких, чем температура окружающей среды (процессы умеренного и глубокого охлаждения). Однако вследствие многих специфических особенностей эти процессы выделены ниже в отдельную группу холодильных процессов.

Скорость тепловых процессов в значительной степени зависит от гидродинамических условий (скоростей, режимов течения), при которых осуществляется перенос тепла между обменивающимися теплом средами.



3. Массообменные (диффузионные) процессы, характеризующиеся переносом одного или нескольких компонентов исходной смеси из одной фазы в другую через поверхность раздела фаз. Наиболее медленной и поэтому обычно лимитирующей стадией массообменных процессов является молекулярная диффузия распределяемого вещества. К этой группе процессов, описываемых законами массопередачи, относятся абсорбция, перегонка (ректификация), экстракция из растворов, растворение и экстракция из пористых твердых тел, кристаллизация, адсорбция и сушка.

Протекание процессов массообмена тесно связано с гидродинамическими условиями в фазах и на границе их раздела и часто — с сопутствующими массообмену процессами переноса тепла (теплообмена).



4. Химические (реакционные) процессы, которые протекают со скоростью, определяемой законами химической кинетики. Однако химическим реакциям обычно сопутствует перенос массы и энергии, и соответственно скорость химических процессов (особенно промышленных) зависит также от гидродинамических условий. Вследствие этого скорость реакций подчиняется законам макрокинетики, и определяется наиболее медленным из последовательно протекающих химического взаимодействия и диффузии. Общие закономерности протекания химических процессов и принципы устройства . реакторов рассматриваются в специальной литературе1.

5. Механические процессы, описываемые законами механики твердых тел. Эти процессы применяются в основном для подготовки исходных твердых материалов и обработки конечных твердых продуктов, а также для транспортирования кусковых и сыпучих материалов. К механическим процессам относятся измельчение, транспортирование, сортировка (классификация) и смешение твердых веществ.

Особую группу механических процессов составляют процессы переработки химических продуктов в изделия — прессование, литье, зкструзия и др. Эти процессы и машины для их проведения специфичны для производств синтетических материалов и рассматриваются в специальных курсах.

По способу организации основные процессы химической технологии делятся на периодические и непрерывные.

Периодические процессы проводятся в аппаратах, в которые через определенные промежутки времени загружаются исходные материалы; после их обработки из этих аппаратов выгружаются конечные продукты. По окончании разгрузки аппарата и его повторной загрузки процесс повторяется снова. Таким образом, периодический процесс характеризуется тем, что все его стадии протекают в одном месте (в одном аппарате), но в разное время.

Непрерывные процессы осуществляются в проточных аппаратах. Поступление исходных материалов в аппарат и выгрузка конечных продуктов производятся одновременно и непрерывно. Следовательно, непрерывный процесс характеризуется тем, что все его стадии протекают одновременно, но разобщены в пространстве, т. е. осуществляется в различных частях одного аппарата или же в различных аппаратах, составляющих данную установку.

Известны также комбинированные процессы. К ним относятся непрерывные процессы, отдельные стадии которых проводятся периодически, либо периодические процессы, одна или несколько стадий которых протекают непрерывно.

Основные преимущества непрерывных процессов по сравнению с периодическими следующие: 1) нет перерывов в выпуске конечных продуктов, т. е. отсутствуют затраты времени на загрузку аппаратуры исходными материалами и выгрузку из нее продукции; 2) более легкое автоматическое регулирование и возможность более полной механизации; 3) устойчивость режимов проведения и соответственно большая стабильность качества получаемых продуктов; 4) большая компактность оборудования, что сокращает капитальные затраты и эксплуатационные расходы (на ремонты и пр.); 5) более полное использование подводимого, (или отводимого) тепла при отсутствии перерывов в работе аппаратов; возможность использования (рекуперации) отходящего тепла.

Благодаря указанным достоинствам непрерывных процессов при их проведении увеличивается производительность аппаратуры, уменьшается потребность в обслуживающем персонале, улучшаются условия труда и повышается качество продукции. По этим причинам в многотоннажных химических производствах имеется тенденция осуществлять преимущественно непрерывные процессы. Периодические процессы сохраняют свое значение главным образом в производствах относительно небольшого масштаба (в том числе в опытных) с разнообразным ассортиментом продукции, где применение указанных процессов позволяет достичь большой гибкости в использовании оборудования при меньших капитальных затратах.

Непрерывные процессы отличаются от периодических по распределению времени пребывания частиц среды в аппарате. В периодически действующем аппарате все частицы среды находятся одинаковое время, в то время кяк в непрерывно действующем аппарате времена пребывания их могут значительно различаться. По распределению времен пребывания различают две теоретические (предельные) модели аппаратов непрерывного действия: идеального вытеснения и идеального смешения.

В аппаратах идеального вытеснения все частицы движутся в заданном направлении, не перемешиваясь с движущимися впереди и сзади частицами и полностью вытесняя находящиеся впереди частицы потока. Все частицы равномерно распределены по площади поперечного сечения такого аппарата и действуют при движении подобно твердому поршню. Время пребывания всех частиц в аппарате идеального вытеснения одинаково.

В аппаратах идеального смешения поступающие частицы сразу же полностью перемешиваются с находящимися там частицами, т. е. равномерно распределяются в объеме аппарата. В результате во всех точках объема мгновенно выравниваются значения параметров, характеризующих процесс. Время пребывания частиц в аппарате идеального смешения неодинаково.

Реальные непрерывно действующие аппараты представляют собой аппараты промежуточного типа. В них время пребывания частиц распределяется несколько более равномерно, чем в аппаратах идеального смешения, но никогда не выравнивается, как в аппаратах идеального вытеснения.

Процессы могут быть также классифицированы в зависимости от изменения их параметров (скоростей, температур, концентраций и др.) во времени. По этому признаку процессы делятся на установившиеся (стационарные) и неустановившиеся (нестационарные, и ли переходные).

В установившихся процессах значения каждого из параметров, характеризующих процесс, постоянны во времени, а в неустановившихся — переменны, т. е. являются функциями не только положения каждой точки в пространстве, но и времени. Анализ характеристик неустановившихся процессов представляет наибольший интерес для целей автоматического регулирования. В химической технологии неустановившимися являются менее распространенные периодические процессы. Для непрерывных процессов изменение параметров во времени должно учитываться при изменении режима работы и в период пуска установок, однако этот период является кратковременным и в расчете им пренебрегают.



Лекция №2.

Общие принципы анализа и расчета процессов и аппаратов
Расчеты процессов и аппаратов обычно имеют следующие основные цели:

а) определение условий предельного, или равновесного, состояния системы;

б) вычисление расходов исходных материалов и количеств получаемых продуктов, а также количеств потребной энергии (тепла) и расхода теплоносителей;

в) определение оптимальных режимов работы и соответствующей им рабочей поверхности или рабочего объема аппаратов;

г) вычисление основных размеров аппаратов.

Эти задачи определяют содержание и последовательность расчетов. Исходным этапом являются расчет и анализ статики процесса, т. е. рассмотрение данных о равновесии, на основе которых определяют направление и возможные пределы осуществления процесса. Пользуясь этими данными, находят предельные значения параметров процесса, необходимые для вычисления его движущей силы (см. ниже). Затем составляют материальные и энергетические балансы, исходя из законов сохранения массы и энергии. Последующий этап представляет собой расчет кинетики процесса, определяющей его скорость. По данным о скорости и движущей силе при выбранном оптимальном режиме работы аппарата находят его рабочую поверхность или объем. Зная поверхность или объем, определяют основные размеры аппарата.



Материальный баланс. По закону сохранения массы масса поступающих веществ должна быть равна массе веществ , получаемых в результате проведения процесса, т. е. без учета потерь

=

Однако в практических условиях неизбежны необратимые потери веществ, обозначая которые через , находим следующее общее выражение материального баланса:



= + (1)

Материальный баланс составляют для процесса в целом или для отдельных его стадий. Баланс может быть составлен для системы в целом или по одному из входящих в нее компонентов. Так, материальный баланс процесса сушки составляют как по всему влажному материалу, поступающему на сушку, так и по одному из его компонентов — массе абсолютно сухого вещества или массе влаги, содержащейся в высушиваемом материале. Баланс составляют либо за единицу времени, например за 1 ч, за сутки (или за одну операцию в периодическом процессе) либо в расчете на единицу массы исходных или конечных продуктов.

На основе материального баланса определяют выход продукта, под которым понимают выраженное в процентах отношение полученного количества (массы) продукта к максимальному, т. е. теоретически возможному.

Иногда понятию выход придают иной смысл, рассчитывая условно выход как массу продукта, отнесенную к единице массы затраченного сырья. При этом в случае использования нескольких видов сырья выход выражают по отношению к какому-либо одному из них. Практический расход исходных материалов обычно превышает теоретический вследствие того, что химические реакции не протекают до конца, происходят потери реагирующих веществ (через неплотности аппаратуры и т. д.).



Энергетический баланс. Этот баланс составляют на основе закона сохранения энергии, согласно которому количество энергии, введенной в процесс, равно количеству выделившейся энергии, т. е. приход энергии равен ее расходу. Проведение химико-технологических процессов обычно связано с затратой различных видов энергии — механической, электрической и др. Эти процессы часто сопровождаются изменением энтальпии системы, в частности, вследствие изменения агрегатного состояния веществ (испарения, конденсации, плавления и т. д.). В химических процессах очень большое значение может иметь тепловой эффект протекающих реакций.

Частью энергетического баланса является тепловой баланс, который в общем виде выражается уравнением:



= + (2)
При этом вводимое тепло

= + +

где — тепло, вводимое с исходными веществами; — тепло, подводимое извне, например с теплоносителем, обогревающим аппарат; — тепловой эффект физических или химических превращений (если тепло в ходе процесса поглощается, то этот член входит с отрицательным знаком).

Отводимое тепло складывается из тепла, удаляющегося с конечными продуктами и отводимого с теплоносителем (например, с охлаждающим агентом).

В энергетическом балансе, кроме тепла, учитываются приход и расход всех видов энергии, например затраты механической энергии на перемещение жидкостей или сжатие и транспортирование газов.

На основании теплового баланса находят расход водяного пара, воды и других теплоносителей, а по данным энергетического баланса — общий расход энергии на осуществление процесса.

Интенсивность процессов и аппаратов. Для анализа и расчета процессов химической технологии необходимо, кроме данных материального и энергетического балансов, знать интенсивность процессов и аппаратов.

Все указанные выше основные процессы (гидродинамические, тепловые, массообменные и др.) могут протекать только под действием некоторой движущей силы, которая для гидромеханических процессов определяется разностью давлений, для теплообменных — разностью температур, для массообменных — разностью концентраций вещества и т. д. Выражения движущей силы для различных видов процессов будут рассмотрены в соответствующих главах курса.

В первом приближении можно считать, что результат процесса, характеризуемый, например, массой М перенесенного вещества или количеством переданного тепла, пропорционален движущей силе (обозначаемой в общем виде через ), времени и некоторой величине А, к которой относят интенсивность процесса. Такой величиной может быть рабочая поверхность, через которую происходит перенос энергии или массы, рабочий объем, в котором осуществляется процесс, и т. п. Следовательно, уравнение любого процесса может быть представлено в общем виде:
М = КА (3)
Коэффициент пропорциональности К в уравнении (3) характеризует скорость процесса и, таким образом, представляет собой кинетический коэффициент, или коэффициент скорости процесса (коэффициент теплопередачи, коэффициент массопередачи и т. д.). Коэффициент К отражает влияние всех факторов, не учтенных величинами, входящими в правую часть уравнения (3), а также все отклонения реального процесса от этой упрощенной зависимости.

Под интенсивностью процесса понимают результат его, отнесенный к единице времени и единице величины А, т. е. величину М/А, например энергию или массу, перешедшую в единицу времени через единицу рабочей поверхности (либо перенесенной из одной фазы в другую в единице рабочего объема). Из уравнения (3) следует, что



= К (4)

Соответственно величину К можно рассматривать как меру интенсивности процесса — интенсивность, отнесенную к единице движущей силы.

Интенсивность процесса всегда пропорциональна движущей силе и обратно пропорциональна сопротивлению R, которое является величиной, обратной кинетическому коэффициенту (например, гидравлическое сопротивление, термическое сопротивление, сопротивление массопередаче и т. д.). Таким образом, уравнение (3) может быть выражено также в форме:

М = (5)

Из уравнения (3) или (5) находят необходимую рабочую поверхность или рабочий объем аппарата по известным значениям остальных величин, входящих в уравнение, или определяют результат процесса при заданной поверхности (объеме).

От интенсивности процесса следует отличать объемную интенсивность аппарата — интенсивность, отнесенную к единице его общего объема. С увеличением объемной интенсивности уменьшаются размеры аппарата и снижается расход материалов на его изготовление. Однако объемная интенсивность может лишь до определенной степени служить мерой совершенства аппарата. Это объясняется тем, что объемная интенсивность аппарата связана с интенсивностью процесса, но с увеличением коэффициента скорости процесса его интенсивность обычно возрастает лишь до известного предела. Увеличение коэффициента скорости сверх некоторого значения часто сопровождается уменьшением движущей силы, что может привести к прекращению увеличения интенсивности процесса. Вместе с тем повышение интенсивности процесса не всегда сопровождается эквивалентным повышением объемной интенсивности аппарата, так как наряду с уменьшением его рабочего объема может потребоваться значительное увеличение вспомогательного объема, необходимого, например, для сепарации фаз и т. п. Поэтому повышение объемной интенсивности аппаратов за счет увеличения скорости процесса не может являться самоцелью при их проектировании и эксплуатации.

При оценке конструкции аппарата или режима его работы решающее значение должны иметь технико-экономические характеристики данного аппарата. Оптимальным будет такой аппарат (или такой режим его работы), который обеспечит заданный результат с наименьшими затратами.

Затраты на осуществление процесса складываются из капитальных затрат и эксплуатационных расходов. Увеличение объемной интенсивности приводит к уменьшению размеров аппарата и соответственно к снижению капитальных затрат. Эксплуатационные же расходы при этом, как правило, возрастают, так как интенсификация процесса сопровождается обычно увеличением энергетических затрат. Минимум суммы затрат отвечает определенной объемной интенсивности аппарата, которая и является оптимальной.


  1   2   3   4   5

Похожие:

Лекция Предмет курса «Процессы и аппараты» iconЛекция 1 Книга первая первая лекция название и предмет курса лекций. Порядок изложения. Первый способ
Изложение и критика такого взгляда. Обсуждение одного места у Геродота (II, 53), из
Лекция Предмет курса «Процессы и аппараты» iconЛекция почвообразовательный процесс (2 часа)
...
Лекция Предмет курса «Процессы и аппараты» iconЛекция Предмет и задачи физики. Механическое движение
И план лекционного курса «Механика. Молекулярная физика» для потока М2
Лекция Предмет курса «Процессы и аппараты» iconЛекция Научные основы национальной экономики (4 ч.) Понятие национальной экономики. Предмет и задачи курса «Национальная экономика Беларуси»
Понятие национальной экономики. Предмет и задачи курса «Национальная экономика Беларуси», его место в системе экономических наук
Лекция Предмет курса «Процессы и аппараты» iconЛекция Научные основы национальной экономики (4 ч.) Понятие национальной экономики. Предмет и задачи курса «Национальная экономика Беларуси»
Понятие национальной экономики. Предмет и задачи курса «Национальная экономика Беларуси», его место в системе экономических наук
Лекция Предмет курса «Процессы и аппараты» iconЛекция №1 Предмет и задачи курса План Предмет истории экономических учений
Охватывает период так называемой “экономики свободной конкуренции”. В этот период на арену экономических достижений выходит классическая...
Лекция Предмет курса «Процессы и аппараты» iconПрограмма-минимум кандидатского экзамена по специальности 05. 18. 12 «Процессы и аппараты пищевых производств» по техническим наукам
Настоящая программа обобщает последние достижения науки, техники и передовых технологий, обеспечивающие увеличение производства пищевой...
Лекция Предмет курса «Процессы и аппараты» iconПрограмма дисциплины История России XIX века Направление подготовки 030600 История Квалификация выпускника
Предмет предлагаемого специального курса – " История России ХIX века". Цель лекционного курса – раскрыть основные политические, социально-экономические...
Лекция Предмет курса «Процессы и аппараты» iconЛекция предмет и задачи курса «теория управления»
Охватывают все виды управленческой деятель­ности по созданию материальных ценностей, финансированию, марке­тингу и т д
Лекция Предмет курса «Процессы и аппараты» iconКоролев А. В. Процессы и аппараты пищевых производств
Изобретение относится к сельскохозяйственному машиностроению, в частности к устройствам для приготовления гранулированных кормов
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org