Контрольная работа №3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии



страница10/11
Дата07.10.2012
Размер0.94 Mb.
ТипКонтрольная работа
1   2   3   4   5   6   7   8   9   10   11

Контрольная работа № 3


Вариант 22.

Задача 1. Даны три последовательные вершины параллелограмма А(2;-1), В(-2;-3),С(-1;3). Не находя координаты вершины D, найти:

  1. уравнение стороны AD;

  2. уравнение высоты BK, опущенной из вершины В на сторону AD;

  3. длину высоты BK;

  4. уравнение диагонали BD;

  5. тангенс угла между диагоналями параллелограмма.

Записать общие уравнения найденных прямых. Построить чертеж.

Задача 2. Даны точки A(2;0;3), B(1;1;7), C(0;1;3), D(2;-2;5). Найти:

1) общее уравнение плоскости АВС;

2) общее уравнение плоскости, проходящей через точку D параллельно плоскости АВС;

3) расстояние от точки D до плоскости ABC;

4) канонические уравнения прямой АВ;

5) канонические уравнения прямой, проходящей через точку D параллельно прямой AB;

6) канонические уравнения прямой, проходящей через точку D перпендикулярно плоскости ABC.

Задача 3. Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Построить кривую.

Задача 4. Кривая задана в полярной системе координат уравнением .

Требуется:

  1. найти точки, лежащие на кривой, давая значения через промежуток, равный , начиная от до ;

  2. построить полученные точки;

  3. построить кривую, соединив построенные точки (от руки или с помощью лекала);

  4. составить уравнение этой кривой в прямоугольной декартовой системе координат.

Задача 5. Построить на плоскости геометрическое место точек, определяемое неравенствами

1) ;

2) .

  1. Контрольная работа № 3


Вариант 23.

Задача 1. Даны три последовательные вершины параллелограмма А(1;3), В(0;2),С(-1;-2). Не находя координаты вершины D, найти:

  1. уравнение стороны AD;

  2. уравнение высоты BK, опущенной из вершины В на сторону AD;

  3. длину высоты BK;

  4. уравнение диагонали BD;

  5. тангенс угла между диагоналями параллелограмма.

Записать общие уравнения найденных прямых. Построить чертеж.

Задача 2. Даны точки A(-1;-2;-1), B(-3;-2;1), C(-1;0;3), D(-3;1;5). Найти:

1) общее уравнение плоскости АВС;

2) общее уравнение плоскости, проходящей через точку D параллельно плоскости АВС;

3) канонические уравнения прямой АD;

4) канонические уравнения прямой, проходящей через точку B параллельно прямой AD;

5) косинус угла между прямой AD и прямой ;

6) синус угла между плоскостью ABC и прямой AD.

Задача 3.
Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Построить кривую.

Задача 4. Кривая задана в полярной системе координат уравнением .

Требуется:

  1. найти точки, лежащие на кривой, давая значения через промежуток, равный , начиная от до ;

  2. построить полученные точки;

  3. построить кривую, соединив построенные точки (от руки или с помощью лекала);

  4. составить уравнение этой кривой в прямоугольной декартовой системе координат.

Задача 5. Построить на плоскости геометрическое место точек, определяемое неравенствами

1) ;

2) .

  1. Контрольная работа № 3


Вариант 24.

Задача 1. Даны три последовательные вершины параллелограмма А(1;-1), В(-1;2),С(3;3). Не находя координаты вершины D, найти:

  1. уравнение стороны AD;

  2. уравнение высоты BK, опущенной из вершины В на сторону AD;

  3. длину высоты BK;

  4. уравнение диагонали BD;

  5. тангенс угла между диагоналями параллелограмма.

Записать общие уравнения найденных прямых. Построить чертеж.

Задача 2. Даны точки A(-2;5;-3), B(2;-3;1), C(2;-2;-4), D(-3;1;2). Найти:

1) общее уравнение плоскости АВС;

2) общее уравнение плоскости, проходящей через точку D параллельно плоскости АВС;

3) расстояние от точки D до плоскости ABC;

4) канонические уравнения прямой АВ;

5) канонические уравнения прямой, проходящей через точку D параллельно прямой AB;

6) координаты точки пересечения прямой и плоскости ABC.

Задача 3. Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Построить кривую.

Задача 4. Кривая задана в полярной системе координат уравнением .

Требуется:

  1. найти точки, лежащие на кривой, давая значения через промежуток, равный , начиная от до ;

  2. построить полученные точки;

  3. построить кривую, соединив построенные точки (от руки или с помощью лекала);

  4. составить уравнение этой кривой в прямоугольной декартовой системе координат.

Задача 5. Построить на плоскости геометрическое место точек, определяемое неравенствами

1) ;

2) .

1   2   3   4   5   6   7   8   9   10   11

Похожие:

Контрольная работа №3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии icon2. Основы аналитической геометрии 1Основные понятия аналитической геометрии. Уравнения окружности и сферы
Аналитическая геометрия – это геометрия, изучаемая средствами алгебры с использованием систем координат. В аналитической геометрии...
Контрольная работа №3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии iconЛекция 5 по курсу «Линейная алгебра и аналитическая геометрия»
В предыдущих лекциях мы изучали прямые линии и плоскости, они задаются уравнениями первой степени: ax + by + cz + d = Сегодня мы...
Контрольная работа №3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии iconКанонические уравнения
Инварианты – параметры, которые остаются неизменными (инвариантными) при переходе от одной декартовой системы координат к другой...
Контрольная работа №3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии iconМетодические указания по темам «Аналитическая геометрия на плоскости» и«Элементы линейной алгебры. Аналитическая геометрия в пространстве»
Составители – Мостовская Любовь Григорьевна, доцент кафедры высшей математики и программного обеспечения ЭВМ мгту
Контрольная работа №3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии icon11. Алгебраические линии и поверхности второго порядка, канонические уравнения, классификация
Являются инвариантами линий 2-го порядка относительно преобразований декартовой системы координат
Контрольная работа №3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии iconАналитическая геометрия и линейная алгебра
Ны «Аналитическая геометрия и линейная алгебра» обеспечивает приобретение знаний и умений в соответствии с государственным образовательным...
Контрольная работа №3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии iconПрограмма (раздел курса) Форма проведения 2 3 Математика
Аналитическая геометрия, Линии второго порядка. Поверхности вращения, n-мерное векторное пространство, проективные преобразования...
Контрольная работа №3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии iconЗадачи по теме «Дифференциальная геометрия»
В точке t=0 для винтовой линии записать уравнения главной нормали; бинормали м соприкасающейся плоскости
Контрольная работа №3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии iconНа самостоятельное изучение по дисциплине «Аналитическая геометрия» выносятся следующие темы:
Тема № Аффинное n-мерное пространство. Аффинная система координат на плоскости и в 3-х-мерном аффинном пространстве
Контрольная работа №3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии icon1. Организационно-методический раздел. 1 Название курса. Линейная алгебра и аналитическая геометрия
Основной курс "Линейная алгебра и аналитическая геометрия" предназначен для студентов первого курса отделения прикладной инфоматики...
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org