Проект «Платоновы тела и тайны мироздания» Полное название разработки: «Правильные многогранники. Изучаем проектно»



страница7/8
Дата08.10.2012
Размер0.76 Mb.
ТипРеферат
1   2   3   4   5   6   7   8

Звездчатый икосаэдр

Икосаэдр имеет двадцать граней. Если каждую из них продолжить неограниченно, то тело будет окружено большим многообразием отсеков — частей пространства, ограниченных плоскостями граней. Все звёздчатые формы икосаэдра можно получить добавлением к исходному телу таких отсеков. Не считая самого икосаэдра, продолжения его граней отделяют от пространства 20+30+60+20+60+120+ 12+30+60+60 отсеков десяти различных форм и размеров. Большой икосаэдр состоит из всех этих кусков, за исключением последних шестидесяти.

Большой икосаэдр

Среди звездчатых форм икосаэдра встречаются некоторые соединения платоновых тел. Среди них: соединения пяти октаэдров, энантиоморфные формы соединения пяти тетраэдров и соединения десяти тетраэдров. Если бы Платон смог видеть эти формы, они привели бы его в восхищение. После того как были открыты эти и ряд других многогранников, ученые, естественно, задумались над вопросом: сколько существует звездчатых форм икосаэдра? В 1900 году Брюкнер опубликовал классическую работу о многогранниках, озаглавленную "Vielecke und Vielflache", в которой были представлены некоторые новые звездчатые формы икосаэдра. Открытием еще несколько форм мы обязаны Уиллеру(1924). В 1938 году систематическое и полное исследование вопроса провел Кокстер совместно с Дювалем, Флэзером, Петри. Для различения исходных форм и выделения характерных форм они применили правила ограничения, установленные Дж. Миллером. Кокстер доказал, что существует всего 59 звездчатых форм икосаэдра, из которых 32 обладают полной, а 27 неполной икосаэдральной симметрией (последнее обстоятельство дает возможность строить энантиоморфные им аналоги, которые имеют красивый и необычный вид).

Представим некоторые формы икосаэдров:
Первая звёздчатая форма икосаэдра.

Эту модель делают из 20 частей, каждая часть представляет собой невысокую треугольную пирамиду без основания.



Вторая звёздчатая форма икосаэдра.

На этой очень красивой модели заметны пятигранные высокие пики, выступающие из впадин модели соединения десяти тетраэдров.



Шестая звёздчатая форма икосаэдра.

Показанная на рисунке модель является ещё одной звёздчатой формой икосаэдра. На ней легко обнаружить 12 длинных пиков.

Звездчатый Икосододекаэдр

Иpng" name="graphics98" align=left hspace=12 width=96 height=87 border=0>косододекаэдр имеет 32 грани, из которых 12 являются правильными пятиугольными гранями, а остальные 20 — правильные треугольники. Казалось бы, столь большое число граней потребует сложнейших исследований. Что касается вопроса о том, могут ли получившиеся многогранники оказаться правильными, то на него давно получен ответ. Великий математик Коши ещё в 1811 году доказал, что список правильных многогранников исчерпывается пятью платоновыми телами вкупе с четырьмя многогранниками Кеплера — Пуансо.

Звёздчатый кубооктаэдр

Кубооктаэдр – полуправильный многогранник. Он строится так: в кубе проводятся отсекающие плоскости через середину ребер, выходящих из одной вершины. В результате получится полуправильный многогранник - кубооктаэдр. Его гранями являются шесть квадратов, как у куба, и восемь правильных треугольников, как у октаэдра. Отсюда и его название.
Многогранники из-за их необычных свойств симметрии исследуются с древнейших времён. Формы многогранников широко используются в декоративном искусстве, в ювелирной промышленности при изготовлении всевозможных украшений и в архитектуре.

Работы Эшера - «Порядок и хаос», гравюра «Звезды».


Источники информации:

http://festival.1september.ru

http://polyhedron2008.narod.ru/pages/stars.htm

http://ru.wikipedia.org

http://art.ioso.ru/seminar/2008/projects5/mnogogranniki.ppt

«Геометрические стоматологи» МОУ «Большегривская СОШ» Нововаршавского района
Геометрические этюды Эшера.
Исторически, математика играла важную роль в изобразительном искусстве, в частности при изображении перспективы, подразумевающем реалистичное изображение трехмерной сцены на плоском холсте или листе бумаги. Согласно современным взглядам, математика и изобразительное искусство очень удаленные друг от друга дисциплины, первая - аналитическая, вторая - эмоциональная. Математика не играет очевидной роли в большинстве работ современного искусства, и, фактически, многие художники редко или вообще никогда не используют перспективу. Однако, есть много художников, для которых математика находится в центре внимания. Несколько значительных фигур в изобразительном искусстве проложили дорогу этим индивидуумам.

Вообще-то не существует каких-либо правил или ограничений на использование различных тем в математическом искусстве. Однако, есть несколько тем, которые достаточно часто используются различными художниками. Среди них есть использование многогранников, невозможных фигур, лент Мебиуса, искаженных или необычных систем перспективы. Отдельные работы часто включают в себя одновременно несколько тем.

Голландский художник Мориц Корнилис Эшер (1898-1972) в некотором роде является отцом математического искусства. Математические идеи играют центральную роль в большинстве его картин за исключением лишь ранних работ. Большинство идей, часто используемых современными математическими художниками, были использованы Эшером, и его работы часто являются источником вдохновения для современных авторов.


Многогранники
Правильные геометрические тела - многогранники - имели особое очарование для Эшера. Во многих его работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. Существует лишь пять правильных многогранников, то есть таких тел, все грани которых состоят из однаковых правильных многоугольников. Они еще называются телами Платона. Это - тетраэдр, гранями которого являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр, имеющий восемь треугольных граней, додекаэдр, гранями которого являются двенадцать правильных пятиугольников, и икосаэдр с двадцатью треугольными гранями. На гравюре "Четыре тела" Эшер изобразил пересечение

основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.


Большое количество различных многогранников может быть получено объединением правильных многогранников, а также превращением многогранника в звезду. Для преобразования многогранника в звезду необходимо заменить каждую его грань пирамидой, основанием которой является грань многогранника. Изящный пример звездчатого додекаэдра можно найти в работе "Порядок и хаос".

1950

В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором. Заметим также, что анализируя картину можно догадаться о природе источника света для всей композиции - это окно, которое отражается левой верхней части сферы.

Фигуры, полученные объединением правильных многогранников, можно встретить во многих работах Эшера. Наиболее интересной среди них является гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры. Таким образом нам необходимо отвлечься от привычного восприятия картины и попытаться взглянуть на нее свежим взором, чтобы представить ее целиком.




Среди наиболее важных работ Эшера с математической точки зрения являются картины, оперирующие с природой самого пространства. Литография "Три пересекающиеся плоскости" - хороший пример для начала обзора таких картин.

Этот пример демонстрирует интерес художника к размерности пространства и способность мозга распознавать трехмерные изображения на двухмерных рисунках. Эшер использовал данный принцип для создания изумительных визуальных эффектов.


Под влиянием рисунков в книге математика Х. Коксетера Эшер создал много иллюстраций гиперболического пространства. Один из примеров можно увидеть в работе "Предел круга II". (1959)

Здесь представлен один из двух видов неевклидового пространства, описанных французским математиком Пуанкаре. Чтобы понять особенности этого пространства, представьте, что вы находитесь внутри самой картины. По мере вашего перемещения от центра круга к его границе ваш рост будет уменьшаться также, как уменьшаются рыбы на данной картине. Таким образом, путь, который вам надо будет пройти до границы круга будет казаться вам бесконечным. На самом деле, находясь в таком

пространстве вы, на первый взгляд, не заметите ничего необычного в нем по сравнению с обычным евклидовым пространством. Например, чтобы достичь границ евклидового пространства вам также необходимо пройти бесконечный путь. Однако, если внимательно присмотреться, то можно будет заметить некоторые отличия, например, все подобные треугольники имеют в этом пространстве одинаковый размер, и вы не сможете там нарисовать фигуры с четырьмя прямыми углами, соединенными прямыми линиями, так как в этом пространстве не существует квадратов и прямоугольников.

Кроме особенностей евклидовой и неевклидовой геометрий Эшера интересовали визуальные аспекты топологии. Топология изучает свойства тел и поверхностей пространства, которые не изменяются при деформации, например,  растяжении, сжатии или изгибе. Единственное, к чему не должна приводить деформация - это к разрыву. Топологам приходится изображать множество странных объектов. Одним из наиболее известных является лента Мебиуса, которая встречается во многих работах Эшера. Это может показаться странным, но у этой поверхности есть только одна сторона и одна кромка. Если вы проследите путь муравьев на литографии "Лента Мебиуса II", то увидите, что муравьи ползут не по противоположным поверхностям ленты, а по одной и той же.
1966

Другая интересная литография называется "Картинная галерея", в которой изменены одновременно и топология и логика пространства. Мы видим мальчика, который смотрит на картину. На ней нарисован приморский город с магазином на берегу, а в магазине - картинная галерея, а в галерее стоит мальчик, который смотрит на картину, на которой нарисован приморский город...


1956

Для понимания любой картины Эшера требуется внимание и наблюдательность, а эта работа требует особого внимания. Каким-то образом Эшер завернул пространство в кольцо, и получилось, что мальчик находится одновременно внутри картины и вне ее. Секрет этого эффекта состоит в том, каким образом преобразовано изображение. Понять это можно, анализируя карандашный набросок сетки, которым пользовался Эшер при создании картины. Расстояние между линиями сетки увеличивается в направлении движения стрелки часов. Заметим еще, на чем основана хитрость картины - белое пятно в центре. Математики называют это пятно особым местом или особой точкой, где пространства не существует. Не существует способа изобразить этот участок картины без швов или наложений, поэтому Эшер решил эту проблему, поместив в центр картины свой автограф.
Логика пространства
Под "логикой" пространства мы понимаем те отношения между физическими объектами, которые обычны для реального мира, и при нарушении которых возникают визуальные парадоксы, называемые еще оптическими иллюзиями. Большинство художников, экспериментирующие с логикой пространства, изменяют эти отношения между объектами, основываясь на своей интуиции, как, например, Пикассо.
Эшер понимал, что геометрия определяет логику пространства, но и логика пространства определяет геометрию. Одна из наиболее часто используемый особенностей логики пространства - игра света и тени на выпуклых и вогнутых объектах. На литографии "Куб с полосками" выступы на лентах являются визуальным ориентиром того, как расположены полоски в пространстве и как они переплетаются с кубом. И если вы верите своим глазам, то вы никогда не поверите тому, что нарисовано на этой картине.

Еще один из аспектов логики пространства - перспектива. На рисунках, в которых присутствует эффект перспективы, выделяют так называемые точки исчезновения, которые сообщают глазу человека о бесконечности пространства.  Изучение особенностей перспективы началось еще во времена возрождения художниками Альберти, Дизаргом и многими другими. Их наблюдения и выводы легли в основу современной геометрии проекций.
Вводя дополнительные точки исчезновения и, немного изменяя элементы композиции для достижения нужного эффекта, Эшер смог изобразить картины, в которых изменяется ориентация элементов в зависимости от того, как зритель смотрит на картину. На картине "Cверху и cнизу" художник разместил сразу пять точек исчезновения - по углам картины и в центре. В результате, если мы смотрим на нижнюю часть картины, то создается впечатление, что мы смотрим вверх. Если же обратить взгляд на верхнюю половину картину, то кажется, что мы смотрим вниз. Чтобы подчеркнуть этот эффект, Эшер изобразил два вида одной и той же композиции.

1947
Третий тип картин с нарушенной логикой пространства - это "невозможные фигуры". Парадокс невозможных фигур основан на том, что наш мозг всегда пытается представить нарисованные на бумаге двухмерные рисунки как трехмерные. Эшер создал много работ, в которых обратился к этой аномалии. Наиболее интересная работа - литография "Водопад" – основана на фигуре невозможного треугольника, придуманного математиком Роджером Пенроузом. В этой работе два невозможных треугольника соединены в единую невозможную фигуру. Создается впечатление, что водопад является замкнутой системой, работающей по типу вечного двигателя, нарушая закон сохранения энергии. (Обратите внимание на многогранники, установленные на башнях водопада.)

1961

Использование Эшером различных математических фигур и законов не ограничивается лишь вышеприведенными примерами. Внимательно изучая его картины, можно обнаружить и другие, не упомянутые в данной статье, геометрические тела или визуальную интерпретацию математических законов.

Источники информации:

1. http://im-possible.info/russian/articles/escher_math/escher_math.html

2.http://propsd.ru/knigibesplatno/2743-geometricheskie_jetjudy_jeshera.html

3. teach.rspu.edu.ru/intel/ChaltsevaAS/student_samples/student_web_site

4. http://www.genon.ru/

5. http://im-possible.info/russian/articles/vis_math_art/


Примерные ответы на основополагающий вопрос:
1. Красота и гармония тесно связаны с симметрией, это подметили еще древние архитекторы и художники. Пропорция и симметрия объекта всегда необходимы нашему зрительному восприятию для того, чтобы мы могли считать этот объект красивым.

Многогранники – фигуры, обладающие всеми тремя видами симметрии: центральной, осевой и зеркальной, и поэтому особенно интересны для изучения и восхищения.

Но приписывать миру закон существования по правилам многогранников (Как это делал Платон) будет неверно. Пример – с Кеплером.

2.Что красиво и полезно, то и выгодно, (пример с формой вирусов). Но, конечно, природа разнообразна. Поэтому говорить о том, что мир живет только по законам многогранников – это неверно.

Мы увидели, что нельзя все описать по законам многогранников (пример – теория И.Кеплера об устройстве солнечной системы).

3. Для симметрии важны равенство, однообразие, и пропорциональность: однообразно (в смысле подчинения какой-либо математической закономерности) располагая равные части, можно построить симметричную фигуру. Если же нарушить закон однообразия, то мы получим уже менее симметричную, в пределе – ассиметричную фигуру. Например,

как у гоголевского Собакевича:




«Только такой субъект, как гоголевский Собакевич, мог вступить в спор с архитектором и настоять на своем — он заколотил на одной стороне все окна и вместо них провертел одно маленькое. «Фронтон тоже никак не пришелся посередине,— пишет Гоголь,— потому что хозяин приказал одну колонну сбоку выкинуть, и оттого очутилось не четыре колонны, а только три». Дом получился неуклюжий, вполне похожий на хозяина». Я думаю – мы ответили на вопрос: «Действительно ли мир существует по правилам многогранников?». Не все в мире подчиняют свою жизнь законам симметрии.
(Источник информации: библиотека юного исследователя. http://nplit.ru/books/item/f00/s00/z0000033/st011.shtml)
1   2   3   4   5   6   7   8

Похожие:

Проект «Платоновы тела и тайны мироздания» Полное название разработки: «Правильные многогранники. Изучаем проектно» iconУрок геометрии 10 кл Тема урока: "Правильные многогранники" ("платоновы тела") (2 часа), 10 класс"
Познакомить учащихся с новым типом выпуклых многогранников правильными многогранниками
Проект «Платоновы тела и тайны мироздания» Полное название разработки: «Правильные многогранники. Изучаем проектно» iconОтчет о проведении телекоммуникационного межрегионального проекта «Платоновы тела и тайны мироздания»
Автор: Карлова Галина Николаевна, учитель математики моу «Смирновская сош» Нижнеомского муниципального образования
Проект «Платоновы тела и тайны мироздания» Полное название разработки: «Правильные многогранники. Изучаем проектно» iconПравильные и полуправильные многогранники (платоновы и архимедовы тела)
...
Проект «Платоновы тела и тайны мироздания» Полное название разработки: «Правильные многогранники. Изучаем проектно» iconМакеты сложных многогранников. Правильные многогранники или «тела Платона»
Правильные многогранники или «тела Платона», называются выпуклыми объемами. Все грани их являются одинаковыми и правильными многоугольниками....
Проект «Платоновы тела и тайны мироздания» Полное название разработки: «Правильные многогранники. Изучаем проектно» icon20. Правильные многогранники и их симметрия
По аналогии с правильными плоскими фигурами многоугольниками в пространстве определяют правильные многогранники: многогранник называется...
Проект «Платоновы тела и тайны мироздания» Полное название разработки: «Правильные многогранники. Изучаем проектно» iconПравильные многоугольники
Я выбрала тему «Правильные многогранники» потому, что в нашей жизни многогранники встречаются повсюду, почти в каждом предмете можно...
Проект «Платоновы тела и тайны мироздания» Полное название разработки: «Правильные многогранники. Изучаем проектно» iconПрограмма элективного курса «правильные многогранники»
Правильные многогранники. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но...
Проект «Платоновы тела и тайны мироздания» Полное название разработки: «Правильные многогранники. Изучаем проектно» iconПравильные многогранники
Правильные многогранники. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но...
Проект «Платоновы тела и тайны мироздания» Полное название разработки: «Правильные многогранники. Изучаем проектно» iconИсследовательская работа по математике Платоновы тела как основа мироздания
Пчелы строили шестиугольные соты задолго до появления человека, а в истории цивилизации создание многогранных тел (подобных пирамидам)...
Проект «Платоновы тела и тайны мироздания» Полное название разработки: «Правильные многогранники. Изучаем проектно» iconМногогранники, правильные многогранники
...
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org