Лекция 12. Первообразная и неопределённый интеграл. 12 Первообразная функция. Определение



страница5/6
Дата09.10.2012
Размер0.61 Mb.
ТипЛекция
1   2   3   4   5   6
Лекция 16. Приближенное вычисление определенного интеграла.
Как было сказано выше, существует огромное количество функций, интеграл от которых не может быть выражен через элементарные функции. Для нахождения интегралов от подобных функций применяются разнообразные приближенные методы, суть которых заключается в том, что подынтегральная функция заменяется “близкой” к ней функцией, интеграл от которой выражается через элементарные функции.

16.1. Формула прямоугольников.
Если известны значения функции f(x) в некоторых точках x0, x1, … , xm, то в качестве функции “близкой” к f(x) можно взять многочлен Р(х) степени не выше m, значения которого в выбранных точках равны значениям функции f(x) в этих точках.



Если разбить отрезок интегрирования на n равных частей . При этом:

y0 = f(x0), y1 = f(x1), …. , yn = f(xn).

Составим суммы: y0?x + y1?x + … + yn-1?x

y1?x + y2?x + … + yn?x

Это соответственно нижняя и верхняя интегральные суммы. Первая соответствует вписанной ломаной, вторая – описанной.

Тогда или

- любая из этих формул может применяться для приближенного вычисления определенного интеграла и называется общей формулой прямоугольников.



16.2. Формула трапеций.
Эта формула является более точной по

у сравнению с формулой прямоугольников.

Подынтегральная функция в этом случае

заменяется на вписанную ломаную.



y1 у2 уn

a x1 x2 b x
Геометрически площадь криволинейной трапеции заменяется суммой площадей вписанных трапеций. Очевидно, что чем больше взять точек n разбиения интервала, тем с большей точностью будет вычислен интеграл.
Площади вписанных трапеций вычисляются по формулам:





После приведения подобных слагаемых получаем формулу трапеций:


16.3. Формула парабол

(формула Симпсона или квадратурная формула).
(Томас Симпсон (1710-1761)- английский математик)
Разделим отрезок интегрирования [a, b] на четное число отрезков (2m). Площадь криволинейной трапеции, ограниченной графиком функции f(x) заменим на площадь криволинейной трапеции, ограниченной параболой второй степени с осью симметрии, параллельной оси Оу и проходящей через точки кривой, со значениями f(x0), f(x1), f(x2).

Для каждой пары отрезков построим такую параболу.

у

0 х0 х1 х2 х3 х4 х
Уравнения этих парабол имеют вид Ax2 + Bx + C, где коэффициенты А, В, С могут быть легко найдены по трем точкам пересечения параболы с исходной кривой.

(1)

Обозначим .



Если принять х0 = -h, x1 = 0, x2 = h, то (2)

Тогда уравнения значений функции (1) имеют вид:



C учетом этого: .

Отсюда уравнение (2) примет вид:

Тогда


Складывая эти выражения, получаем формулу Симпсона:



Чем больше взять число m, тем более точное значение интеграла будет получено.
Пример. Вычислить приближенное значение определенного интеграла

с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей.
По формуле Симпсона получим:



m

0

1

2

3

4

5

6

7

8

9

10




x

-2

-1

0

1

2

3

4

5

6

7

8

f(x)

2.828

3.873

4

4.123

4.899

6.557

8.944

11.87

15.23

18.94

22.97



Точное значение этого интеграла – 91.173.
Как видно, даже при сравнительно большом шаге разбиения точность полученного результата вполне удовлетворительная.
Для сравнения применим к этой же задаче формулу трапеций.



Формула трапеций дала менее точный результат по сравнению с формулой Симпсона.

Кроме вышеперечисленных способов, можно вычислить значение определенного интеграла с помощью разложения подынтегральной функции в степенной ряд.

Принцип этого метода состоит в том, чтобы заменить подынтегральную функцию по формуле Тейлора и почленно проинтегрировать полученную сумму.
Пример. С точностью до 0,001 вычислить интеграл



Т.к. интегрирование производится в окрестности точки х=0, то можно воспользоваться для разложения подынтегральной функции формулой Маклорена.

Разложение функции cos x имеет вид:

Зная разложение функции cos х легко найти функцию 1 – cos x:


В этой формуле суммирование производится по п от 1 до бесконечности, а в предыдущей – от 0 до бесконечности. Это – не ошибка, так получается в результате преобразования.
Теперь представим в виде ряда подынтегральное выражение.

Теперь представим наш интеграл в виде:

В следующем действии будет применена теорема о почленном интегрировании ряда. (Т.е. интеграл от суммы будет представлен в виде суммы интегралов членов ряда).

Вообще говоря, со строго теоретической точки зрения для применения этой теоремы надо доказать, что ряд сходится и, более того, сходится равномерно на отрезке интегрирования [0, 0,5]. Эти вопросы будут подробно рассмотрены позже (См. Действия со степенными рядами). Отметим лишь, что в нашем случае подобное действие справедливо хотя бы по свойствам определенного интеграла (интеграл от суммы равен сумме интегралов).
Итак:


Итого, получаем:

Как видно, абсолютная величина членов ряда очень быстро уменьшается, и требуемая точность достигается уже при третьем члене разложения.
Для справки: Точное (вернее – более точное) значение этого интеграла: 0,2482725418…

Лекция 17. Несобственные интегралы.

17.1. Интегралы с бесконечными пределами.
Пусть функция f(x) определена и непрерывна на интервале [a, ?). Тогда она непрерывна на любом отрезке [a, b].
Определение: Если существует конечный предел , то этот предел называется несобственным интегралом от функции f(x) на интервале [a, ?).

Обозначение:
Если этот предел существует и конечен, то говорят, что несобственный интеграл сходится.

Если предел не существует или бесконечен, то несобственный интеграл расходится.
Аналогичные рассуждения можно привести для несобственных интегралов вида:





Конечно, эти утверждения справедливы, если входящие в них интегралы существуют.

Пример.

- не существует.

Несобственный интеграл расходится.

Пример.
- интеграл сходится

Теорема: Если для всех х (x ? a) выполняется условие и интеграл сходится, то тоже сходится и ? .

Теорема: Если для всех х (x ? a) выполняется условие и интеграл расходится, то тоже расходится.
Теорема: Если сходится, то сходится и интеграл .

В этом случае интеграл называется абсолютно сходящимся.

17.2. Интеграл от разрывной функции.

Если в точке х = с функция либо неопределена, либо разрывна, то



Если интеграл существует, то интеграл - сходится, если интеграл не существует, то - расходится.
Если в точке х = а функция терпит разрыв, то .

Если функция f(x) имеет разрыв в точке b на промежутке [a, с], то



Таких точек внутри отрезка может быть несколько.

Если сходятся все интегралы, входящие в сумму, то сходится и суммарный интеграл.

Лекция 18. Приложения определенного интеграла.
18.1. Вычисление площадей плоских фигур.
у

+ +
0 a - b x
Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) < 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) > 0, то площадь имеет знак “+”.

Для нахождения суммарной площади используется формула .

Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.
Пример. Найти площадь фигуры, ограниченной линиями y = x, y = x2, x = 2.



Искомая площадь (заштрихована на рисунке) может быть найдена по формуле:

(ед2)
18.2. Нахождение площади криволинейного сектора.


? = f(?)


?


О ? ?



Для нахождения площади криволинейного сектора введем полярную систему координат. Уравнение кривой, ограничивающей сектор в этой системе координат, имеет вид ? = f(?), где ? - длина радиус – вектора, соединяющего полюс с произвольной точкой кривой, а ? - угол наклона этого радиус – вектора к полярной оси.

Площадь криволинейного сектора может быть найдена по формуле



18.3. Вычисление длины дуги кривой.
y y = f(x)
?Si ?yi

?xi

a b x
Длина ломаной линии, которая соответствует дуге, может быть найдена как .

Тогда длина дуги равна .

Из геометрических соображений:

В то же время

Тогда можно показать, что



Т.е.

Если уравнение кривой задано параметрически, то с учетом правил вычисления производной параметрически заданной, получаем

,

где х = ?(t) и у = ?(t).

Если задана
1   2   3   4   5   6

Похожие:

Лекция 12. Первообразная и неопределённый интеграл. 12 Первообразная функция. Определение iconI. первообразная и неопределенный интеграл
Всякая непрерывная функция имеет бесчисленное первообразная, которое отличаются друг друга на постоянное число
Лекция 12. Первообразная и неопределённый интеграл. 12 Первообразная функция. Определение iconПервообразная. Неопределённый интеграл
Первообразная. Непрерывная функция f ( X ) называется первообразной для функции f ( X ) на промежутке X, если для каждого
Лекция 12. Первообразная и неопределённый интеграл. 12 Первообразная функция. Определение iconИнтегрирование функции одного переменного. § Первообразная и неопределенный интеграл
Определение: Функция F(x)=D(a,b) называется первообразной для функции f(x) на (a,b), если F’(x)=f(x)
Лекция 12. Первообразная и неопределённый интеграл. 12 Первообразная функция. Определение icon"Первообразная и интеграл " всего: 15 часов
Технологическая карта I часть Математика 11 класс тема: "Первообразная и интеграл " всего: 15 часов
Лекция 12. Первообразная и неопределённый интеграл. 12 Первообразная функция. Определение icon5. Неопределенный интеграл 1 Первообразная и неопределенный интеграл
К числу важных прикладных задач относятся задачи определения закона движения частицы по известной скорости и определения скорости...
Лекция 12. Первообразная и неопределённый интеграл. 12 Первообразная функция. Определение iconВопросы к экзаменам 2 семестр
Первообразная. Неопределенный интеграл, его свойства. Таблица основных формул интегрирования
Лекция 12. Первообразная и неопределённый интеграл. 12 Первообразная функция. Определение iconсессия) 2 первообразная функции (неопределенный интеграл) 2
Интегрирование, как операция, обратная дифференцированию. Таблица неопределенных интегралов 2
Лекция 12. Первообразная и неопределённый интеграл. 12 Первообразная функция. Определение iconМетоды интегрирования: а замена переменной, б по частям. Примеры
Первообразная и неопределенный интеграл. Теорема о виде первообразных. Геометрический смысл неопределенного интеграла
Лекция 12. Первообразная и неопределённый интеграл. 12 Первообразная функция. Определение iconЭкзаменационные вопросы Первообразная и неопределенный интеграл. Основные свойства неопределенного интеграла
Основные методы интегрирования: непосредственное интегрирование, метод подстановки
Лекция 12. Первообразная и неопределённый интеграл. 12 Первообразная функция. Определение iconКурскгту 08 Первообразная и неопределенный интеграл ©Дроздов В. И
...
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org