Билет Кинематика. Механическое движение. Материальная точка и абсолютно твердое тело. Кинематика материальной точки и поступательного движения твердого тела. Траектория, путь, перемещение, скорость, ускорение



страница4/4
Дата09.10.2012
Размер0.56 Mb.
ТипДокументы
1   2   3   4

Билет 31.

Микро- и макросостояния. Статистический вес. Обратимые и необратимые процессы. Энтропия. Закон возрастания энтропии. Теорема Нернста.
+ Билет 30.
Статистический вес - это число способов, которыми может быть реализовано данное состояние системы. Статистические веса всех возможных состояний системы определяют её энтропию.
Обратимые и необратимые процессы.

Обратимый процесс (то есть равновесный) — термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.

(Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Обратимые процессы дают наибольшую работу.

На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.)

Необратимый процесс - процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы.
В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.
Теорема Нернста (Третье начало термодинамики) — физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных.

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система».



или



Где x — любой термодинамический параметр.

(Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение):

,

третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Согласно третьему началу термодинамики, при gif" align=bottom width=54 height=14 border=0>значение .)
Билет 32.

Реальные газы. Уравнение Ван-де-Ваальса. Внутренняя энергия реально газа.
Реальный газ — газ, который не описывается уравнением состояния идеального газа Клапейрона — Менделеева.  

Молекулы в реальном газе взаимодействуют между собой и занимают определенный объем.

На практике часто описывается обобщенным уравнением Менделеева — Клапейрона:


Уравнение состояния газа Ван-дер-Ваальса — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.

(Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, учитывающая силы межмолекулярного взаимодействия. В этой модели внутренняя энергия U становится функцией не только температуры, но и объёма.)

Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.

Для н молей газа Ван-дер-Ваальса уравнение состояния выглядит так:



  • p — давление,

  • V — объём,

  • T — абсолютная температура,

  • R — универсальная газовая постоянная.


Внутренняя энергия реального газа складывается из кинетической энергии теплового движения молекул и потенциальной энергии межмолекулярного взаимодействия

U = CvT - a/V
Билет 33.

Физическая кинетика. Явление переноса в газах. Число столкновений и средняя длина свободного пробега молекул.
Физическая кинетика - микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классической статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внешних полей.

Явления переноса в газах наблюдаются лишь в том случае, если система находится в неравновесном состоянии.

  1. Диффузия– процесс переноса материи или энергии из области с высокой концентрацией в область с низкой концентрацией.

  2. Теплопроводность - передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте.

  3. Вязкость (внутреннее трение) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой.

Число(Частота) столкновений и средняя длина свободного пробега молекул.

Двигаясь со средней скоростью в среднем за время τ частица проходит расстояние, равное средней длине свободного пробега < l >:

< l > = τ

τ – это время, которое молекула движется между двумя последовательными соударениями (аналог периода)

Тогда среднее число столкновений за единицу времени (средняя частота столкновений) есть величина, обратная периоду:

v = 1 / τ = / = σn

Длина пути < l>, при которой вероятность столкновения с частицами – мишенями становится равной единице, называется средней длиной свободного пробега.

= 1 / σn
Билет 34.

Диффузия в газах. Коэффициент диффузии. Вязкость газов. Коэффициент вязкости. Теплопроводность. Коэффициент теплопроводности.

Диффузия – процесс переноса материи или энергии из области с высокой концентрацией в область с низкой концентрацией.

Диффузия в газах происходит намного быстрее чем в других агрегатных состояниях, что обусловлено характером теплового движения частиц в этих средах.

Коэффициент диффузии - количество вещества, проходящего в единицу времени через участок единичной площади при градиенте концентрации, равном единице.

Коэффициент диффузии отражает скорость диффузии и определяется свойствами среды и типом диффундирующих частиц.

Вязкость (внутреннее трение) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой.

Когда говорят о вязкости, то число, которое обычно рассматривают, это коэффициент вязкости. Существует несколько различных коэффициентов вязкости, зависящих от действующих сил и природы жидкости:

-Динамическая вязкость (или абсолютная вязкость) определяет поведение несжимаемой ньтоновской жидкости.

-Кинематическая вязкость это динамическая вязкость деленная на плотность для ньютоновских жидкостей.

-Объемная вязкость определяет поведение сжимаемой ньютоновской жидкости.

-Вязкость при сдвиге (Сдвиговая вязкость) – коэффициент вязкости при сдвиговых нагрузках (для не-ньютоновских жидкостей)

-Объемная вязкость – коэффициент вязкости при сжатии (для неньютоновских жидкостей)

Теплопроводность – процесс переноса теплоты, приводящий к выравниванию температуры по всему объему системы.

Коэффициент теплопроводности - численная характеристика теплопроводности материала, равная количеству теплоты, проходящей через материал толщиной 1 м и площадью 1 кв.м за час при разности температур на двух противоположных поверхностях в 1 град.C.
1   2   3   4

Похожие:

Билет Кинематика. Механическое движение. Материальная точка и абсолютно твердое тело. Кинематика материальной точки и поступательного движения твердого тела. Траектория, путь, перемещение, скорость, ускорение iconДинамика вращательного движения. Момент силы. Момент инерции. Теорема Штейнера
Кинематика. Механическое движение. Материальная точка и абсолютно твёрдое тело. Кинематика материальной точки и поступательного движения...
Билет Кинематика. Механическое движение. Материальная точка и абсолютно твердое тело. Кинематика материальной точки и поступательного движения твердого тела. Траектория, путь, перемещение, скорость, ускорение iconФизике механика кинематика
Кинематика. Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение....
Билет Кинематика. Механическое движение. Материальная точка и абсолютно твердое тело. Кинематика материальной точки и поступательного движения твердого тела. Траектория, путь, перемещение, скорость, ускорение iconПрограмма по физике механика кинематика. Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Скорость. Ускорение
Кинематика. Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение....
Билет Кинематика. Механическое движение. Материальная точка и абсолютно твердое тело. Кинематика материальной точки и поступательного движения твердого тела. Траектория, путь, перемещение, скорость, ускорение iconПрограмма по физике механика кинематика. Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Скорость. Ускорение
Кинематика. Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение....
Билет Кинематика. Механическое движение. Материальная точка и абсолютно твердое тело. Кинематика материальной точки и поступательного движения твердого тела. Траектория, путь, перемещение, скорость, ускорение iconПрограмма вступительных испытаний физика механика
Кинематика. Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение....
Билет Кинематика. Механическое движение. Материальная точка и абсолютно твердое тело. Кинематика материальной точки и поступательного движения твердого тела. Траектория, путь, перемещение, скорость, ускорение iconПрограмма по физике механика I. Кинематика
Механическое движение. Система отсчета. Относительность движения. Материальная точка. Траектория. Путь и перемещение. Мгновенная...
Билет Кинематика. Механическое движение. Материальная точка и абсолютно твердое тело. Кинематика материальной точки и поступательного движения твердого тела. Траектория, путь, перемещение, скорость, ускорение iconПрограмма вступительных испытаний по физике (для поступающих на заочную форму обучения) Механика Кинематика
Механическое движение. Относительность механического движения. Материальная точка. Система отсчета. Траектория. Перемещение и путь....
Билет Кинематика. Механическое движение. Материальная точка и абсолютно твердое тело. Кинематика материальной точки и поступательного движения твердого тела. Траектория, путь, перемещение, скорость, ускорение iconЗанятие № Кинематика материальной точки
Основные понятия: система отсчёта, траектория, путь, перемещение, радиус-вектор материальной точки, скорость, путевая скорость, ускорение...
Билет Кинематика. Механическое движение. Материальная точка и абсолютно твердое тело. Кинематика материальной точки и поступательного движения твердого тела. Траектория, путь, перемещение, скорость, ускорение iconИ термическая обработка металлов
Механическое движение материальной точки и твердого тела. Кинематика поступательного и вращательного движения
Билет Кинематика. Механическое движение. Материальная точка и абсолютно твердое тело. Кинематика материальной точки и поступательного движения твердого тела. Траектория, путь, перемещение, скорость, ускорение iconПрограмма вступительных испытаний, проводимых в фгбоу впо «Сибади» по физике в 2012 г
Кинематика. Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org