Решение. Нарисуем прямую у = 3



Скачать 69.93 Kb.
Дата28.11.2012
Размер69.93 Kb.
ТипРешение
Л. Сердюкова,

г. Сочи, Краснодарский край


Геометрический смысл производной

Задания по графику функции

Демонстрационный вариант

Сделай по образцу и проверь себя

На рисунке изображен график функции у = f(x), определенной на интервале (–9; 8). Используя рисунок, выполните задания 1–3.



Задание 1. Найдите количество точек на отрезке [–8; 3], в которых касательная к графику функции параллельна прямой у = 3.

Решение. Нарисуем прямую у = 3.



Проведем касательные к графику функции, параллельные прямой у = 3.
По рисунку найдем число этих касательных, а следовательно, и искомых точек. Оно равно 6.
Ответ: 6.

На рисунке изображен график функции у = f(x), определенной на интервале (–8; 7). Используя рисунок, выполните задания 1–3.



Задание 1. Найдите количество точек, в которых касательная к графику функции параллельна прямой у = –2.

Решение. Нарисуем прямую у = ___.



Проведем касательные к графику функции, ______________________ прямой у = –2. По рисунку найдем число этих __________, а следовательно, и искомых __________ Оно равно ___.

Ответ: ____.

Задание 2. Определите количество точек с целыми отрицательными абсциссами, в которых производная функции положительна.

Решение. Производная функции положительна, если функция возрастает. Значит, нас интересуют те точки с отрицательными целыми абсциссами, где функция возрастает, то есть точки х = –8; –7; –5; –4. Их количество равно 4.

Ответ: 4.

Задание 2. Определите количество точек с целыми положительными абсциссами, в которых производная функции отрицательна.

Решение. Производная функции отрицательна, если функция __________. Значит, нас интересуют те точки с __________________ целыми ___________, где функция ____________, то есть точки
х = ___; ______ Их количество равно ___.


Ответ: ____.



Задание 3. Найдите количество точек экстремума функции.

Решение. Точки экстремума функции — это точки максимума и минимума («холмики» и «впадинки»). В нашем случае их 9.

Ответ: 9.

Задание 3. Найдите количество точек экстремума функции.

Решение. Точки экстремума функции — это точки минимума и __________________ (_______ и «холмики»). Всего их ___.

Ответ: ___.

Задание 4. На рисунке изображен график функции у = f(x) и касательная к нему в точке с абсциссой х0. Найдите значение производной функции f(x) в точке х0.



Решение. f´(x) = tg , где  — угол, который образует касательная с положительным направлением оси Ох.



В точке х0 функция убывает, следовательно, ее производная отрицательна и касательная образует тупой угол  с положительным направлением оси Ох. Из прямоугольного треугольника найдем тангенс угла , смежного с углом .
Вспомним, что тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему: Поскольку

 +  = 180,

то tg 

 = tg (180 – ) = –tg  = –2.

Ответ: –2.

Задание 4. На рисунке изображен график функции у = f(x) и касательная к нему в точке с абсциссой х0. Найдите значение производной функции f(x) в точке х0.



Решение. f´(x) = __________, где  — угол, который образует касательная с ______________________ направлением оси _____.



В точке х0 функция _____________, следовательно, ее производная ___________ _______ и касательная образует __________ угол  с положительным направлением оси Ох. Из прямоугольного треугольника найдем тангенс угла _____. tg  = _____.

Ответ: ____.





Геометрический смысл производной

Задания по графику производной

Демонстрационный вариант

Сделай по образцу и проверь себя

На рисунке изображен график производной функции y = f´(x), определенной на интервале (– 7,5; 7). Используя рисунок, выполните задания 5–8.



Задание 5. Найдите количество точек, в которых касательная к графику функции у = f(x) параллельна прямой у = х + 1 или совпадает с ней.

Решение. Касательная к графику функции у = f(x) параллельна или совпадает с прямой у = х + 1, если ее угловой коэффициент k = 1. Но значение углового коэффициента касательной равно значению производной в точке касания, то есть нам нужно найти точки, в которых f´(x) = 1. Построим прямую у = 1, параллельную оси Ох.



Эта прямая и график функции имеют 5 общих точек. Значит, в этих точках f´(x)= 1, и в них касательная к графику функции у = f(x) параллельна или совпадает с прямой у = х + 1.

Ответ: 5.

На рисунке изображен график производной функции y = f´(x), определенной на интервале (–5; 4). Используя рисунок, выполните задания 5–8.



Задание 5. Найдите количество точек, в которых касательная к графику функции у = f(x) параллельна прямой у = 2х + 14 или совпадает с ней.

Решение. Касательная к графику функции у = f(x) параллельна или совпадает с прямой у = 2х + 14, если ее угловой коэффициент k = ____. Но значение углового коэффициента касательной равно значению _________________ в точке касания, то есть нам нужно найти точки, в которых f´(x) = _____. Построим прямую у = ____, параллельную оси _____.



Эта прямая и график функции имеют ____ общие точки. Значит, в этих ___________ точках f´(x) = 2, их касательная к графику функции у = f(x) _________________ или совпадает с прямой у = 2х + 14.

Ответ: ____.



Задание 6. Найдите количество точек экстремума функции f(x) на этом промежутке.

Решение. Точка является точкой экстремума непрерывной функции, если при прохождении через эту точку производная меняет знак, то есть график производной пересекает ось Ох. На данном промежутке производная функции y = f´(x) меняет знак 1 раз, поэтому и количество точек экстремума функции
у = f(x) на данном промежутке равно 1.
Ответ: 1.

Задание 6. Найдите количество точек экстремума функции f(x) на этом промежутке.

Решение. Точка является точкой экстремума __________________ функции, если при прохождении через эту точку ее производная ________ знак, то есть график производной пересекает ось ____. На данном промежутке производная функции y = f´(x) меняет знак ____ раза, поэтому количество точек экстремума функции
у = f(x) на данном промежутке равно ____.

Ответ: ____.

Задание 7. Найдите количество промежутков убывания функции.

Решение. Функция убывает на промежутках, где ее производная отрицательна (ниже оси Ох). По рисунку видно, что количество промежутков, где производная отрицательна, равно 1, следовательно, и количество промежутков убывания функции равно 1.

Ответ: 1.

Задание 7. Найдите количество промежутков возрастания функции.

Решение. Функция возрастает на промежутках, где ее производная _________________. По рисунку видно, что количество промежутков, где производная ___________________, равно ____, следовательно, и количество промежутков возрастания функции равно ___.

Ответ: ____.

Задание 8. В какой точке отрезка [–5; –2] функция f(x) принимает наименьшее значение?

Решение. На отрезке [–5; –2] производная положительна, следовательно, функция f(x) возрастает на этом отрезке и принимает наименьшее значение при наименьшем значении х, то есть в левом конце отрезка при х = – 5.

Ответ: –5.

Задание 8. В какой точке отрезка [–4; 0] функция f(x) принимает наибольшее значение?

Решение. На отрезке [–4; 0] производная __________________, следовательно, функция f(x) ____________ на этом отрезке и принимает наибольшее значение при __________________ значении х, то есть при х = _____.

Ответ: _________.



Похожие:

Решение. Нарисуем прямую у = 3 iconКонтрольная работа №1 «Натуральные числа и шкалы»
Отметьте точки а и в и проведите через них прямую. Начертите луч ос, пересекающий прямую ав, и луч мк, не пересекающий прямую ав
Решение. Нарисуем прямую у = 3 iconУроке мы с вами изучим тему «Графический редактор Paint» ис помощью него нарисуем бабочку «Павлиноглазку Артемиду»
Сегодня на уроке мы с вами изучим тему «Графический редактор Paint» и с помощью него нарисуем бабочку «Павлиноглазку Артемиду»
Решение. Нарисуем прямую у = 3 iconРассматриваются примеры механических систем с неголономными связями удерживающими и неудерживающими. Удар диска о шероховатую прямую, односторонний конек, удар двухстороннего конька о прямую
Показывается, что движение с односторонними однородными связями носит безударный характер
Решение. Нарисуем прямую у = 3 iconРешение. Пусть существуют натуральные a, b, n, для которых верно n 2 3 3 2
Возьмем отрезок ас такой, что его длина равна, и с не лежит на прямой ав. На отрезке ав отметим точку d такую, что аd = а. Проведем...
Решение. Нарисуем прямую у = 3 icon«Аксиома параллельных прямых»
Проведите прямую. Отметьте точку А, не лежащую на прямой а. Проведите через точку а прямую, параллельную прямой а
Решение. Нарисуем прямую у = 3 iconДвадцать седьмой турнир городов весенний тур
В треугольнике abc угол a равен 60. Серединный перпендикуляр к стороне ab пересекает прямую ac в точке N. Серединный перпендикуляр...
Решение. Нарисуем прямую у = 3 iconСмотрите прямую трансляцию Race of Champions 2011 на телеканале «Авто Плюс»
Второй год подряд телеканала «Авто Плюс» ведет прямую трансляцию из Дюссельдорфа с события, которое вот уже 20 лет завершает гоночный...
Решение. Нарисуем прямую у = 3 iconПлан-конспект урока масштаб (тема урока) фио (полностью) Глазкова Марина Георгиевна
Цели урока: организация продуктивной деятельности на решение следующих задач: ввести понятие масштаба, закрепить умения решать задачи,...
Решение. Нарисуем прямую у = 3 iconDisney переходит на прямую модель выпуска dvd в России c 1 января 2009 года ООО «Уолт Дисней Компани снг»
Ооо «Уолт Дисней Компани снг» переходит на прямую модель производства, логистики и продвижения dvd на российском рынке
Решение. Нарисуем прямую у = 3 iconЛабораторная работа №4 Создание мультимедийной презентации в Роwег Роiпt Векторный рисунок «Кораблик» Рисование фона
С его помощью нарисуем прямоугольник, начиная с левого нижнего угла и растягивая его вверх -вправо немного не доходя до середины...
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org