Конспект лекции 3 (часть 1) Орлова И. В., Гусарова О. М. 2007 Тема Множественная регрессия. Вопросы Нелинейная регрессия. Нелинейные модели и их линеаризация



Скачать 303.6 Kb.
страница3/3
Дата01.12.2012
Размер303.6 Kb.
ТипКонспект
1   2   3

Регрессионные модели с переменной структурой (фиктивные переменные).


Термин “фиктивные переменные” используется как противоположность “значащим” пе­ременным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная — это индикаторная пе­ременная, отражающая качественную характеристику. Это могут быть разного рода атрибутивные призна­ки, такие, например, как профессия, пол, образование, климати­ческие условия, принадлежность к определенному региону. Что­бы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т. е. каче­ственные переменные преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными. В литературе можно встретить термины «структурные переменные» или «искусственные переменные»

Например, в результате опроса группы людей 0 может означать, что опра­шиваемый — мужчина, а 1 — женщина. К фиктивным переменным иногда относят рег­рессор, состоящий из одних единиц (т.е. константу, свободный член), а также временной тренд.

Фиктивные переменные позволяют строить и оценивать кусочно-линейные модели, которые можно применять для исследования структурных изменений.

Пусть, например, мы исследуем зависимость выпуска продукции Y от размера основного фонда предприятия хt. При этом есть основания считать, что в момент времени t0 произошла структурная перестройка и характер зависимости изменился.

Чтобы оценить такую модель введем бинарную переменную



и запишем нашу модель в виде:

При tt0 линия регрессии имеет наклон , при t > t0 наклон равен и разрыва в точке xt не происходит. При приходим к выводу, что в момент t0 структурного изменения не происходит.
Использование фиктивных переменных в моделях с временными рядами

В регрессионных моделях с временными рядами используется три основных вида фиктивных переменных:

1) Переменные-индикаторы принадлежности наблюдения к определенному периоду — для моделирования скачкообразных структурных сдвигов. Границы периода (моменты “скачков”) должны быть установлены из априорных соображений.
Например, 1, если наблюдение принадлежит периоду 1941-45 гг. и 0 в противном случае. Это пример использования для моделирования временного структурного сдвига. Постоянный структурный сдвиг моделируется переменной равной 0 до определенного момента времени и 1 для всех наблюдений после этого момента времени.
2) Сезонные переменные — для моделирования сезонности. Сезонные переменные принимают разные значения в зависимости от того, какому месяцу или кварталу года или какому дню недели соответствует наблюдение.

Например, модель потребления, учитывающая сезонные колебания.

у = b0 + b1x1 + b2x2 + b3x3,


для зимних месяцев

иначе

для весенних месяцев

иначе

для летних месяцев

иначе

Следует отметить, что вводить четвертую переменную х4 для осенних месяцев не требуется, т.к. в этом случае все переменные оказались бы связанными тождеством

Xi2+Хз+Х4= 1,

что привело бы их к полной коллинеарности и вырожденности информационной матрицы .

Для осенних месяцев коэффициенты b1, b2, b3 равны нулю и объем потребления составляет Y= b0

Для зимних месяцев: Y=b0 + b1,

Для весенних месяцев: Y=b0 + b2,

Для летних месяцев: Y=b0 + b3.

При этом, если в результате регрессионного анализа окажется, что b3 = 0, это означает, что между летними и осенними сезонами различие в потреблении несущественно. При b1 = b2 отсутствует различие между потреблением зимой и весной и т.д.
3) Линейный временной тренд — для моделирования постепенных плавных структурных сдвигов. Эта фиктивная переменная показывает, какой промежуток времени прошел от некоторого “нулевого” момента времени до того момента, к которому относится данное наблюдение (координаты данного наблюдения на временной шкале). Если промежутки времени между последовательными наблюдениями одинаковы, то временной тренд можно составить из номеров наблюдений.

Временной тренд отличается от бинарных фиктивных переменных тем, что имеет смысл использовать его степени: t2 , t3 и т. д. Они помогают моделировать гладкий, но нелинейный тренд. (Бинарную переменную нет смысла возводить в степень, потому что в результате получится та же самая переменная.)

Можно также комбинировать указанные виды фиктивных переменных, создавая переменные “взаимодействия” соответствующих эффектов.

Комбинация рассмотренных фиктивных переменных позволяет моделировать еще один эффект — изменение наклона тренда с определенного момента. Помимо тренда в регрессию следует тогда ввести следующую переменную: в начале выборки до некоторого момента времени она равна 0, а вторая ее часть представляет собой временной тренд (1, 2, 3 и т. д. в случае одинаковых интервалов между наблюдениями).

Использование фиктивных переменных имеет следующие преимущества:

  1. Интервалы между наблюдениями не обязательно должны быть одинаковыми. В выборке могут быть пропущенные наблюдения.

  2. Коэффициенты при фиктивных переменных легко интерпретировать, они наглядно представляют структуру динамического процесса.

  3. Для оценивания модели не приходится выходить за рамки классического метода наименьших квадратов.

Пример Требуется построить регрессионную модель зависимости заработной платы работника (Y) от возраста (Х) с использованием фиктивной переменной по фактору пол по 20 работникам одного предприятия



1

2

3

4

5

6

7

8

9

10

Y – заработная плата работника за месяц ($)

300

400

300

320

200

350

350

400

380

400

X - возраст работника (лет)

29

40

36

32

23

45

38

40

50

47

Z – пол, М/Ж

Ж

М

Ж

Ж

М

Ж

Ж



М



М



М




































11

12

13

14

15

16

17

18

19

20

Y – заработная плата работника за месяц ($)

250

350

200

400

220

320

390

360

260

250

X - возраст работника (лет)

28

30

25

48

30

40

40

38

29

25

Z – пол, М/Ж

Ж



М



М



М

Ж



М



М



М

Ж



М


Решение

Введем в модель фиктивную переменную Z, которая принимает два значения: 1 – если пол мужской; 0 – если пол женский. Оценим параметры модели методом наименьших квадратов. Для вычислений воспользуемся Пакетом анализа в EXCEL. Уравнение множественной регрессии примет вид:

.

Коэффициент детерминации равен 0,74.

Уравнение регрессии значимо по F-критерию на 5% уровне, так как

Из полученного уравнения регрессии следует, что при одном и том же возрасте заработная плата у работников мужчин на 17,27$ в месяц выше, чем у женщин.

Из модели, включающей фиктивную переменную можно получить частные уравнения регрессии для работников мужчин (z=1) и женщин (z=0):





Рис. Графики частных уравнений регрессии.


Сопоставляя частные уравнения регрессии, видим, что эти уравнения регрессии отличаются значениями свободного члена, а соответствующие линии регрессии параллельны (см. рис.). График частного уравнения регрессии для мужчин будет располагаться выше, чем график частного уравнения регрессии для женщин.
1   2   3

Похожие:

Конспект лекции 3 (часть 1) Орлова И. В., Гусарова О. М. 2007 Тема Множественная регрессия. Вопросы Нелинейная регрессия. Нелинейные модели и их линеаризация icon1. Линейная парная регрессия Краткая теоретическая справка
Регрессия [regression] – зависимость среднего значения какой-либо случайной величины от некоторой другой величины (парная регрессия)...
Конспект лекции 3 (часть 1) Орлова И. В., Гусарова О. М. 2007 Тема Множественная регрессия. Вопросы Нелинейная регрессия. Нелинейные модели и их линеаризация iconПарная регрессия и корреляция
Парная регрессия представляет собой регрессию между двумя переменными – и, т е модель вида
Конспект лекции 3 (часть 1) Орлова И. В., Гусарова О. М. 2007 Тема Множественная регрессия. Вопросы Нелинейная регрессия. Нелинейные модели и их линеаризация iconМножественная регрессия и корреляция
Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, введя их в модель,...
Конспект лекции 3 (часть 1) Орлова И. В., Гусарова О. М. 2007 Тема Множественная регрессия. Вопросы Нелинейная регрессия. Нелинейные модели и их линеаризация iconКонспект лекции 4 (часть 2) концевая н. В. 2007 Тема Многомерный статистический анализ Вопросы Многомерный статистический анализ
Многомерный статистический анализ. Задачи классификации объектов: кластерный анализ. Дискриминантный анализ
Конспект лекции 3 (часть 1) Орлова И. В., Гусарова О. М. 2007 Тема Множественная регрессия. Вопросы Нелинейная регрессия. Нелинейные модели и их линеаризация iconИнструкция по выполнению контрольной работы Построение многофакторной линейной регрессионной модели зависимости объема продаж с помощью инструмента Регрессия надстройки Пакет анализа Подготовительный этап
На данном этапе студент должен проделать следующие обязательные действия, связанные с организацией индивидуальной рабочей среды
Конспект лекции 3 (часть 1) Орлова И. В., Гусарова О. М. 2007 Тема Множественная регрессия. Вопросы Нелинейная регрессия. Нелинейные модели и их линеаризация iconИсторические хроники мировых событий за последние десять тысячелетий
Мангышлакская регрессия. Уровень моря падает на 60 м ниже уровня океана. (2-й экокризис)
Конспект лекции 3 (часть 1) Орлова И. В., Гусарова О. М. 2007 Тема Множественная регрессия. Вопросы Нелинейная регрессия. Нелинейные модели и их линеаризация icon1 Парная линейная регрессия
В последнее время широкое распространение получило использование моделирования и количественного анализа в экономике. В результате...
Конспект лекции 3 (часть 1) Орлова И. В., Гусарова О. М. 2007 Тема Множественная регрессия. Вопросы Нелинейная регрессия. Нелинейные модели и их линеаризация iconНелинейные процессы в физике сплошных сред
Уравнения Максвелла для высокочастотного поля в сплошной среде. Нелинейная диэлектрическая проницаемость. Матричные элементы взаимодействия...
Конспект лекции 3 (часть 1) Орлова И. В., Гусарова О. М. 2007 Тема Множественная регрессия. Вопросы Нелинейная регрессия. Нелинейные модели и их линеаризация iconКонспект лекций по философии Часть 1 Античная философия Новосибирск 2007 удк 101. 8 (075) ббк ю3я73-1
Савостьянов А. Н. Конспект лекций по философии / Новосиб гос ун-т. Новосибирск, 2007. Ч. Античная философия. 68 с
Конспект лекции 3 (часть 1) Орлова И. В., Гусарова О. М. 2007 Тема Множественная регрессия. Вопросы Нелинейная регрессия. Нелинейные модели и их линеаризация iconАкимов Ю. К. «Современные методы регистрации частиц» Количество часов
Во время лекции вопросы следует задавать преподавателю по ходу ее изложения. Материал после каждой лекции прорабатывается, и возникающие...
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org