3. линейные, евклидовы и унитарные пространства линейные пространства



страница3/13
Дата21.12.2012
Размер0.49 Mb.
ТипДокументы
1   2   3   4   5   6   7   8   9   ...   13

Линейная зависимость и независимость векторов


Определение. Система векторов называется линейно независимой, если равенство выполняется только при .

Утверждение. Система векторов линейно независима тогда и только тогда, когда ни один из этих векторов не является линейной комбинацией остальных векторов данной системы.

Определение. Система векторов называется линейно зависимой, если существуют числа , не равные нулю одновременно, при которых выполняется равенство .

Утверждение. Система векторов линейно зависима то­гда и только тогда, когда хотя бы один из этих векторов является линейной комбинацией остальных векторов данной системы.

Примеры

1. Являются ли линейно зависимыми (независимыми) векторы



Решение. По определению линейная зависимость или независимость векторов устанавливается исходя из условия равенства нулю линейной комбинации этих векторов



или в развёрнутом виде



Если эти равенства выполняются при условии, что хотя бы один из коэффициентов отличен от нуля, то векторы линейно зависимы. Записанные равенства представляют собой однородную систему линейных уравнений относительно коэффициентов . Эта система имеет нетривиальное решение (т.е. решение, в котором не все
44

одновременно равны нулю) только при условии равенства нулю определителя системы. В рассматриваемом случае определитель системы равен

Таким образом система имеет лишь тривиальное решение и исходная совокупность векторов линейно независима.

2. При каких вектор линейно выражается через векторы



Решение. По условию задачи надо найти такие , при которых выполняется равенство



или в развёрнутом виде

gif" align=bottom>

Записанные соотношения представляют собой систему неоднородных линейных уравнений относительно - коэффициентов линейной комбинации. В соответствии с теоремой Кронекера-Капелли эта система совместна, если ранг основной матрицы системы равен рангу расширенной матрицы. Выпишем расширенную матрицу для заданных условий:



Сначала определим ранг основной матрицы. Видно, что отличные от нуля миноры второго порядка в матрице имеются, например, минор, стоящий в левом верхнем углу. Вычислим теперь минор третьего по-

рядка (определитель) основной матрицы

45

.

Следовательно, ранг основной матрицы равен двум. Таким образом рассматриваемая система будет совместна, если ранг расширенной матрицы

также будет равен двум. Для этого необходимо, чтобы второй минор третьего порядка расширенной матрицы был равен нулю, т.е.



откуда следует


1   2   3   4   5   6   7   8   9   ...   13

Похожие:

3. линейные, евклидовы и унитарные пространства линейные пространства iconПрограмма экзамена по алгебре и геометрии 2 семестр линейные пространства
Линейные пространства. Понятие линейного пространства. Примеры линейных пространств
3. линейные, евклидовы и унитарные пространства линейные пространства iconВопросы к экзамену алгебра линейные пространства
Размерность и базис линейного пространства. Конечномерные и бесконечномерные линейные пространства. Базис. Разложение вектора по...
3. линейные, евклидовы и унитарные пространства линейные пространства icon4. линейные операторы
Пусть Xn и Ym – линейные пространства. Отображение a называется линейным оператором из Xn в Ym, если оно сохраняет линейные зависимости,...
3. линейные, евклидовы и унитарные пространства линейные пространства iconВысшего профессионального образования города Москвы
Матрицы и определители. Векторные пространства. Евклидовы пространства. Линейные преобразования и их матрицы. Собственные векторы...
3. линейные, евклидовы и унитарные пространства линейные пространства iconВысшего профессионального образования города Москвы
Матрицы и определители. Векторные пространства. Евклидовы пространства. Линейные преобразования и их матрицы. Собственные векторы...
3. линейные, евклидовы и унитарные пространства линейные пространства iconВопросы к экзамену по курсу "Линейная алгебра и геометрия"
Конечномерные линейные пространства. Базис пространства. Размерность пространства
3. линейные, евклидовы и унитарные пространства линейные пространства iconПрограмма курса Линейная и векторная алгебра. Программа курса
Линейные операции над векторами. Базисы, разложение вектора по базису. Координаты вектора. Декартов базис. Скалярное, векторное и...
3. линейные, евклидовы и унитарные пространства линейные пространства iconПрограмма курса «уравнения математической физики»
Линейные пространства, линейная независимость, конечномерные и бесконечномерные пространства, примеры
3. линейные, евклидовы и унитарные пространства линейные пространства iconЛинейные преобразования
Пусть дано п-мерное действительное пространство Vп. Рассмотрим преобразование этого пространства, то есть отображение, переводящее...
3. линейные, евклидовы и унитарные пространства линейные пространства icon2. Линейные пространства
Элементы линейного пространства называются векторами. Операции сложения и умножения на число удовлетворяют следующим аксиомам
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org