3. линейные, евклидовы и унитарные пространства линейные пространства



страница8/13
Дата21.12.2012
Размер0.49 Mb.
ТипДокументы
1   ...   5   6   7   8   9   10   11   12   13

Линейные оболочки и подпространства



Определение. Подпространством линейного пространства называется множество векторов из такое, что для любых двух векторов и из и любых двух вещественных чисел и линейная комбинация также принадлежит .

Утверждение. Подпространство само является линейным про­странством.

56

Определение. Линейной оболочкой системы векторов называется множество всех линейных комбинаций векторов . Обозначается .

Утверждение. Линейная оболочка системы векторов является подпространством.

Определение. Пересечением двух подпространств и на­зывается множество всех векторов, принадлежащих одновре­менно и , и . Обозначается .

Определение. Суммой двух подпространств и называется множество всех векторов , представимых в виде , где , . Обозначается .

Утверждение. Сумма и пересечение подпространств и являются линейными пространствами, и их размерности связаны равенством

+=+.

Определение.
Сумма двух подпространств называется прямой суммой, если пересечение этих подпространств состо­ит только из нулевого вектора.

Примеры

  1. Найти размерность и какой-нибудь базис суммы и пересечения подпространств, порождённых векторами .

Решение. Вычислим вначале размерность подпространств. С этой целью установим, являются ли линейно независимыми векторы, порождающие данные подпространства. Для подпространства , порождённого векторами , равенство нулю линейной комбинации , эквивалентное системе уравнений , достигается лишь при условии . Следовательно, векторы линейно

57

независимы и размерность подпространства равна 2: . Для подпространства , порождённого векторами , проводя аналогичный анализ, получим .

Вычислим теперь размерность пересечения подпространств и . По определению векторы, составляющие пересечение, принадлежат одновременно обоим подпространствам. Произвольный вектор подпространства является линейной комбинацией базисных векторов : . Аналогично для подпространства имеем , тогда условие принадлежности пересечению есть или .

Это условие представляет собой систему уравнений относительно коэффициентов . Составим матрицу системы и упростим её с помощью элементарных преобразований:

Как видно ранг системы равен 3. Значит ФСР состоит из одного линейно независимого вектора. Найдём его, решив систему уравнений, соответствующих последней матрице, получим ,

откуда .

Полагая свободное неизвестное , для остальных имеем

58

. Итак, пересечение подпространств имеет один базисный вектор

.

Размерность пересечения . Следовательно, в соответствии с равенством



размерность суммы подпространств . В качестве базиса суммы подпространств можно взять, например, векторы , дополненные вектором . В линейной независимости векторов убедиться нетрудно.
1   ...   5   6   7   8   9   10   11   12   13

Похожие:

3. линейные, евклидовы и унитарные пространства линейные пространства iconПрограмма экзамена по алгебре и геометрии 2 семестр линейные пространства
Линейные пространства. Понятие линейного пространства. Примеры линейных пространств
3. линейные, евклидовы и унитарные пространства линейные пространства iconВопросы к экзамену алгебра линейные пространства
Размерность и базис линейного пространства. Конечномерные и бесконечномерные линейные пространства. Базис. Разложение вектора по...
3. линейные, евклидовы и унитарные пространства линейные пространства icon4. линейные операторы
Пусть Xn и Ym – линейные пространства. Отображение a называется линейным оператором из Xn в Ym, если оно сохраняет линейные зависимости,...
3. линейные, евклидовы и унитарные пространства линейные пространства iconВысшего профессионального образования города Москвы
Матрицы и определители. Векторные пространства. Евклидовы пространства. Линейные преобразования и их матрицы. Собственные векторы...
3. линейные, евклидовы и унитарные пространства линейные пространства iconВысшего профессионального образования города Москвы
Матрицы и определители. Векторные пространства. Евклидовы пространства. Линейные преобразования и их матрицы. Собственные векторы...
3. линейные, евклидовы и унитарные пространства линейные пространства iconВопросы к экзамену по курсу "Линейная алгебра и геометрия"
Конечномерные линейные пространства. Базис пространства. Размерность пространства
3. линейные, евклидовы и унитарные пространства линейные пространства iconПрограмма курса Линейная и векторная алгебра. Программа курса
Линейные операции над векторами. Базисы, разложение вектора по базису. Координаты вектора. Декартов базис. Скалярное, векторное и...
3. линейные, евклидовы и унитарные пространства линейные пространства iconПрограмма курса «уравнения математической физики»
Линейные пространства, линейная независимость, конечномерные и бесконечномерные пространства, примеры
3. линейные, евклидовы и унитарные пространства линейные пространства iconЛинейные преобразования
Пусть дано п-мерное действительное пространство Vп. Рассмотрим преобразование этого пространства, то есть отображение, переводящее...
3. линейные, евклидовы и унитарные пространства линейные пространства icon2. Линейные пространства
Элементы линейного пространства называются векторами. Операции сложения и умножения на число удовлетворяют следующим аксиомам
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org