2001 Дифференциальное исчисление функции одной переменной. Производная функции, ее геометрический и физический смысл. Определение



страница1/12
Дата24.12.2012
Размер1.91 Mb.
ТипДокументы
  1   2   3   4   5   6   7   8   9   ...   12


gif" align=left>Содержание КВМ Часть 2.
mailto: aalar@cityline.ru

  1   2   3   4   5   6   7   8   9   ...   12

Похожие:

2001 Дифференциальное исчисление функции одной переменной. Производная функции, ее геометрический и физический смысл. Определение iconЗанятие №1 Элементарные функции. Производная функции одной переменной. Дифференциал функции. Теоретические вопросы
Производная функции, ее физический и геометрический смысл. Таблица основных формул дифференцирования функций. Дифференцирование суммы,...
2001 Дифференциальное исчисление функции одной переменной. Производная функции, ее геометрический и физический смысл. Определение iconЛекция №6 Дифференциальное исчисление функции одной переменной План Непрерывность функции Понятие производной
При рассмотрении графика такой функции мы видим, что близким значениям аргумента соответствуют близкие значения функции. Если независимая...
2001 Дифференциальное исчисление функции одной переменной. Производная функции, ее геометрический и физический смысл. Определение iconПроизводная, ее геометрический и физический смысл
Производной функции y = f(x) в точке x называется конечный предел отношения приращения функции к приращению аргумента, когда последнее...
2001 Дифференциальное исчисление функции одной переменной. Производная функции, ее геометрический и физический смысл. Определение iconДифференциальное исчисление Лекция 18. Производная, её геометрический и механический смысл
Важнейшим понятием математического анализа является производная, которая определяет скорость изменения функ­ции
2001 Дифференциальное исчисление функции одной переменной. Производная функции, ее геометрический и физический смысл. Определение iconПланы семинарских занятий по дисциплине «Математика» (Дифференциальное и интегральное исчисление функции многих переменных) 1 курс 2 семестр
Повторение: дифференцирование и интегрирование функции одной переменной. Примеры на усмотрение преподавателя
2001 Дифференциальное исчисление функции одной переменной. Производная функции, ее геометрический и физический смысл. Определение iconФункции комплексной переменной Вопрос
Вопрос. Определение производной от функции комплексной переменной и её геометрический смысл. Вывести условия Коши-Римана
2001 Дифференциальное исчисление функции одной переменной. Производная функции, ее геометрический и физический смысл. Определение iconД. И. Менделеева Дифференциальное и интегральное исчисление функции одной переменной
Авторы: Е. Г. Рудаковская, М. Ф. Рушайло, М. А. Меладзе, Е. Л. Гордеева, В. В. Осипчик
2001 Дифференциальное исчисление функции одной переменной. Производная функции, ее геометрический и физический смысл. Определение iconУчебно-тематические планы лекционных занятий по дисциплине «Математика»
В математику. Дифференциальное и интегральное исчисление функции одной переменной
2001 Дифференциальное исчисление функции одной переменной. Производная функции, ее геометрический и физический смысл. Определение iconПрограмма вступительного экзамена в магистратуру по направлению 010400 «Прикладная математика и информатика»
Определение предела функции одной переменной в точке. Арифметические свойства пределов (привести доказательство одного из свойств)....
2001 Дифференциальное исчисление функции одной переменной. Производная функции, ее геометрический и физический смысл. Определение iconЛекция Производная функци комплексного переменного. План лекции
Производная от функции комплексного переменного. Геометрический смысл модуля и аргумента производной. Дифференциал функции
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org