Элементы квантовой физики. Строение атома и ядра



страница7/18
Дата06.01.2013
Размер0.86 Mb.
ТипДокументы
1   2   3   4   5   6   7   8   9   10   ...   18

2.4.Спин электрона.@


Из квантовой теории следует, что вследствие симметрии электронного облака механический и магнитный моменты атома, находящегося в основном, невозбужденном состоянии, равны нулю. Следовательно, если в опыте Штерна - Герлаха обеспечить условия, при которых в атомном пучке будут двигаться невозбужденные атомы, то такой атомный пучок не должен расщепляться магнитным полем. Однако эксперимент не подтвердил такой вывод квантовой теории. Пучок невозбужденных атомов серебра расщепился на два пучка, которые создали две узкие зеркальные полоски, сдвинутые симметрично вверх и вниз.

Для объяснения этого и ряда подобных явлений в 1925 г. С.Гаудсмит и Дж.Уленбек выдвинули смелую теорию о том, что сам электрон является носителем собственных механического и магнитного моментов, не связанных с движением электрона в пространстве. Эта гипотеза получила название гипотезы о спине электрона. Такое название связано с английским словом spin, которое переводится как кружение, верчение. Согласно выдвинутой теории, электрон обладает собственным моментом импульса Ls, который получил название спина, и собственным магнитным моментом . Спин электрона Ls не квантуется по величине, но квантуется его проекция на направление магнитного поля Lsz согласно формуле

, (2.7)

спиновое квантовое число s может принимать только два значения s = +1/2 и s = -1/2, то есть у самого электрона во внешнем поле возможны два направления спина.

Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Однако такая модель вращающегося заряженного шарика оказалась несостоятельной, так как расчет показал, что ни при каких допустимых скоростях вращения нельзя индуцировать магнитный момент, равный по величине собственному магнитному моменту электрона. Спин электрона не имеет классического аналога. Он характеризует внутреннее свойство квантовой частицы, связанное с наличием у нее некоторой дополнительной степени свободы движения. Количественная характеристика этой степени свободы - спин является для электрона такой же величиной как, например, его масса и заряд.

Наличие спина электрона и возможность его пространственного квантования во внешнем поле позволило объяснить эффекты, которые наблюдались при изучении тонкой структуры оптических спектров ряда атомов. Например, тщательное исследование спектральных линий водорода в магнитном поле показало, что каждая линия состоит из двух близких линий. Это явление получило название тонкой структуры, оно объясняется возможностью двойной ориентации спина.

В 1928 г. П. Дирак обобщил квантовую теорию на случай релятивистского движения частиц.
Это уравнение значительно сложнее уравнения Шредингера по своей структуре, но из уравнения Дирака спиновое квантовое число получается так же естественно, как и три квантовых числа при решении уравнения Шредингера. Можно упрощенно сказать, что собственные механический и магнитный моменты у электрона появляются как следствие учета релятивистских эффектов в квантовой теории. Отметим также, что не только электрон, но и многие другие элементарные частицы, в том числе и не заряженные, обладают спином.

Таким образом, каждое квантовое состояние электрона в атоме определяется набором четырех квантовых чисел n, l, m, s. При этом возможны только определенные комбинации этих квантовых чисел:

n = 1, 2, 3, …  ; l = 0, … n -1; m = – l, – l +1, … l -1,  l ; s =  1/2. (2.8)

2.5.Многоэлектронный атом. Правила распределения электронов по орбиталям. Принцип Паули. @


В многоэлектронных атомах вокруг положительно заряженного ядра двигается несколько электронов, их число равно порядковому номеру атома в таблице Менделеева. У многоэлектронных атомов система энергетических уровней усложняется. Это связано с тем, что каждый электрон в данном случае не только притягивается ядром, но и отталкивается другими электронами.

Для многоэлектронного атома стационарное уравнение Шредингера должно содержать потенциальную энергию взаимодействия ядра со всеми электронами и энергии взаимодействия электронов между собой. Точное аналитическое решение такого уравнения невозможно, на практике пользуются различными приближенными решениями. Например, если считать что взаимодействие электpонов между собой довольно слабое, то в пеpвом пpиближении можно pассматpивать многоэлектронный атом как составленный из нескольких атомов водоpода, вложенных дpуг в дpуга, а взаимодействие электpонов учитывать как добавочное. Такая модель удобна, так как для атома водорода известно точное решение и его pезультаты могут быть использованы.

Решение уравнения Шредингера в таком приближении показывает, что волновые функции для многоэлектронного атома можно выразить через волновые функции атома водорода, при этом энергии возможных состояний электронов зависят уже от двух квантовых чисел n и l. Вследствие этого, структура возможных состояний (электронных оболочек) оказалась для всех атомов идентичной и сходна со структурой атома водорода. Выяснилось, что все состояния водорода присутствуют и в многоэлектронном атоме независимо от того, заняты они электронами или нет. Образно можно сказать, что возможные состояния (орбитали) атома, не перестают существовать даже тогда, когда они не заполнены.

Основное отличие от водорода обнаружилось в заполнении возможных состояний электронами атома. Как оказалось, распределение электронов по состояниям для любого невозбужденного атома происходит на основании следующих законов: пpинципа минимума энеpгии и пpинципа запpета Паули. Первый принцип является общим свойством материи, согласно ему любая система стремится к устойчивому состоянию с наименьшей энергией, поэтому в невозбужденном атоме электроны стремятся занять состояние с минимальной энергией. Но, как оказалось, в многоэлектронном атоме все электроны не могут находиться в одном и том же состоянии. Внимательный анализ спектров испускания в различных диапазонах частот, а также работы выхода электронов из атомов в фотоэффекте привел ученых к выводу, что никакие два электрона в одном и том же атоме не могут находиться в одинаковом квантовом состоянии. Иными словами, каждый электрон в атоме имеет свой собственный “адрес”, записанный набором из четырех квантовых чисел. Этот закон швейцарский физик В. Паули обосновал теоретически и сформулировал в виде принципа запрета: никакие два электрона в одном атоме не могут характеризоваться одинаковым набором всех четырех квантовых чисел чисел n, l, m, s.

Из принципа Паули вытекает следствие, весьма важное для правил заполнения электронных оболочек: в квантовом состоянии, описываемом набором квантовых чисел n, l, m, может находиться максимум два электрона: один со спиновым квантовым числом +1/2 и один со спиновым квантовым числом -1/2. В химии такое состояние называют орбиталью и схематически обозначают квадратиком, а находящиеся на орбитали электроны – стрелками (Рис.13).



Рис.13. Изображение орбиталей: а, б – орбитали заполнененные частично, в – полностью заполненная орбиталь.
Таким образом, электроны в невозбужденном многоэлектронном атоме, последовательно занимают состояния, начиная с имеющего минимальную энергию (согласно принципу минимума энергии системы), при этом, согласно принципу запрета Паули, в одном и том же квантовом состоянии могут находиться не более двух электронов.

1   2   3   4   5   6   7   8   9   10   ...   18

Похожие:

Элементы квантовой физики. Строение атома и ядра iconКонтрольный тест. Строение атома. Строение вещества
Заряд ядра атома и число неспаренных электронов у атома кислорода в основном состоянии соответственно равен
Элементы квантовой физики. Строение атома и ядра icon56. Атомная физика. Строение атома. Радиоактивность. Строение ядра
...
Элементы квантовой физики. Строение атома и ядра icon2. Когерентность и монохроматичность световых волн. Время и длина когерентности
Вопросы для зачетов по физике для студентов специальностей ВиВ; пг и сб по разделам: «Волновая оптика. Квантовая природа излучения....
Элементы квантовой физики. Строение атома и ядра icon«Строение атома и атомного ядра. Использование энергии атомных ядер» Радиоактивность
Вопросы к зачету по теме «Строение атома и атомного ядра. Использование энергии атомных ядер»
Элементы квантовой физики. Строение атома и ядра iconТест «Строение атома» Ядро атома состоит из … а
А разновидности атомов одного и того же химического элемента, имеющие одинаковый заряд ядра, но разное массовое число
Элементы квантовой физики. Строение атома и ядра iconБлок 16. Атом. Ядро атома. Ядерные реакции. Термоядерный синтез Строение атома
Атом в целом нейтрален. Вокруг ядра, подобно планетам, вращаются под действием кулоновских сил со стороны ядра электроны. Находиться...
Элементы квантовой физики. Строение атома и ядра icon2. стабильные ядра и их основные характеристики 1 Состав ядра
Из анализа экспериментов следовало, что размеры ядра (~10-15 м) много меньше размеров самого атома (~10-10 м), при этом практически...
Элементы квантовой физики. Строение атома и ядра iconЛекция 14. Элементы квантовой статистики и зонной теории твердого тела 14 Понятие о квантовой статистике
Свойства систем, состоящих из огромного числа частиц, подчиняющихся законам квантовой механики, изучаются в разделе статистической...
Элементы квантовой физики. Строение атома и ядра iconУрок является шестым уроком в разделе «Строение атома и атомного ядра»
Предложенный урок является шестым уроком в разделе «Строение атома и атомного ядра»
Элементы квантовой физики. Строение атома и ядра iconОптика. Основы квантовой механики. Физика атома и атомного ядра
Элементы волновой теории света. Интерференция света. Электромагнитная природа света. Когерентность и монохроматичность световых волн....
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org