Начертательная геометрия



страница9/12
Дата08.10.2012
Размер1.14 Mb.
ТипКурс лекций
1   ...   4   5   6   7   8   9   10   11   12

Рис 7.11



97

7.4.2.Параллельность прямой и плоскости

Прямая т параллельна плоскости , если в плоскости  можно провести прямую п, параллельную т.

m,если mn (n)

Пример: Через заданную точку А провести плоскость , параллельную данной прямой f ( рис 7.12).

Решение: 1. Через проекции точки А' и А' проводим проекции прямой а (а; а ), соответственно параллельные одноименным проекциям fи f;

2
Рис.7.13.
. Через проекции точки А(А; А) в произвольном направлении проводим проекции прямой b( b1; b"),

Плоскость  проходит через точку А и параллельна прямой f, так как плоскость (а и аf).



Рис.7.12

7.4.3.Параллельность плоскостей

Две плоскости параллельны, если две произвольные пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Пример: Провести через точку А плоскость , параллельную данной плоскости , заданной двумя параллельными прямыми а и b (рис 7.13).
98

На рис.7.13 плоскость  задана пересекающимися прямыми m n (m ab; nl)

7.5.0пределение действительной величины отрезка по его ортогональным проекциям

Отрезок прямой проецируется в натуральную величину лишь в том случае, когда он параллелен плоскости, на которую он проецируется.

Во всех остальных случаях он проецируется на плоскость проекции с искажением.

Для установления зависимости между действительной величиной отрезка прямой и его проекциями рассмотрим рис 7.14



99

В прямоугольной трапеции ABB'А' (углы при вершинах А и В' — прямые) боковыми стор ими являются действительная величина отрезка [АВ] и его горизонтальная проекция [А В ], а основаниями [АА] и [ВВ ] по величине равные удалению концов отрезка А и В от горизонтальной плоскости Н.

АА=Z (. )А;ВВ=Z( . )В

Через точку А, в плоскости трапеции, проводим АВ1АВ, получим прямоугольный треугольник ABB1, у которого катет АВ1[АВ'].
Поэтому геометрическая зависимость между действительной величиной отрезка и его горизонтальной проекцией может быть установлена с помощью прямоугольного треугольника, один из катетов которого равен горизонтальной проекции А В, а другой - разности аппликат котлов отрезка BB- АА Гипотенуза этого треугольника /АВ/ равна действительной величине.

Зависимость между действительной величиной отрезка и его фронтальной проекцией также видна на чертеже.

Для графического определения на эпюре Монжа действительной величины отрезка достаточно построить прямоугольный треугольник, взяв за один его катет горизонтальную^ ( фронтальную, профильную) проекцию отрезка, а за другой катет разность удаления концов отрезка от горизонтальной ( или соответственно фронтальной, профильной) плоскости проекции.

На (рис 7.15) показано определение действительной величины АВ путем построения треугольника АВВо. На этом же чертеже приведен второй вариант решения задачи: построение треугольника А'"В "Ао на базе фронтальной проекции отрезка.

100

С помощью прямоугольного треугольника можно решать задачу по построению на эпюре проекции отрезка на перед заданной

длины.

7.6.0пределение расстояния между точкой и прямой. Между двумя параллельными прямыми

Расстояние от точки до прямой определяется величиной отрезка перпендикуляра, опущенного из точки на прямую:

Из чертежа видно (рис.7.16), что определение расстояния от точки до прямой достигается минимальным количеством геометрических построений;

(m, m) - фронталь: А"М  m Находим горизонтальную проекцию точки М - M', Методом прямоугольного треугольника определяем натуральную

величину искомого расстояния AM,
Расстояние между параллельными прямыми определяется величиной перпендикуляра, опущенного из точки, взятой на одной прямой, на другую прямую.

На прямой n (рис.7.17) отмечаем произвольную точку N. Вращаем прямые тип вокруг оси i H(iN) до положения параллельного фронтальной плоскости проекций (n1n1) и (m1m1). Из точки N'' опускаем перпендикуляр NM на прямую m1. Определяем действительную величину [MN].


101

7.7.Определение расстояния от точки до плоскости, между плоскостями

Расстояние от точки до плоскости определяется величиной отрезка перпендикуляра, опущенного из точки на плоскость.

Пример1_0пределить расстояние от точки А до фронтально проецирующей плоскости  (рис 7.18)

Через А проводим горизонтальную проекцию перпендикуляра mн через А - его фронтальную проекцию mv. Отмечаем точку M=mv. Так как [АМ]V, то [А''М''] =AM = d

Рис.7.18.
Пример2_0пределить расстояние от точки К до плоскости, заданной треугольником АВС (рис 7.19).




102

1 .Переводим плоскость треугольника АВС во фронтально- проецирующее положение. Для этого переходим от системы

; выбираем направление оси X1 h

2.Проецируем треугольник АВС на новую фронтальную плоскость V1 (плоскость треугольника АВС спроецируется в [С1В1];

3.Проецируем на ту же плоскость К K1;

4.Через точку К i проводим (К1M1) [С1 В1]. Искомое расстояние d=К1М1

Расстояние между плоскостями определяется величиной отрезка перпендикуляра, опущенного из точки, взятой на одной плоскости, на другую плоскость.

Исходя из определения, алгоритм решения задачи по нахождению расстояния между плоскостями  и может быть выполнен:

1. Взять в плоскости  произвольную точку А (А);

2. Из точки А опустить перпендикуляр m на плоскость (mА); m;

3. Найти точку М пересечения перпендикуляра m с плоскостью  (M=m);

4. Определить действительную величину [AM]. ( d-=AM), На практике целесообразно, прежде всего перевести плоскость в проецирующее положение. Этим упрощается решение задачи. Пример: Определить расстояние между плоскостями а и р (рис.7.20).

Решение: Переходим от системы Х( V/H) —>X1( V1/H). По отношению к новой плоскости V1 плоскости  и  занимают проецирующее положение, поэтому расстояние d между их фронтальными следами  и  является искомым.



Рис.7.20.

103

8. РАЗВЕРТКИ ПОВЕРХНОСТЕЙ. РАЗВЕРТКИ ГРАННЫХ ПОВЕРХНОСТЕЙ И ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ

Для изготовления деталей, получаемых путем свертывания и изгиба листового или полосового материала, необходимо иметь заготовки - развертки будущих деталей.

Разверткой (выкройкой) поверхности тела называется плоская фигура, полученная путем совмещения всех точек данной поверхности с плоскостью без разрывов и складок.

Развертками поверхностей пользуются на практике для изготовления моделей разных сооружений, форм для металлических отливок, фасонных деталей и устройств в кровельном и котельном деле и т.п.

Эти развертки обычно делают по специальным чертежам. Для построения разверток поверхностей в основном используют следующие графические способы;

а) способ нормальных сечений;

б) способ раскатки;

в) способ триангуляции,(способ треугольников) Рассмотрим построения разверток данными способами на примерах:

8.1,Способ нормальных сечений

1 .Поверхность пересекают плоскостью, перпендикулярной к ее образующим (ребрам), рис 8.1 . Рассечем заданную призматическую поверхность фронтально - проецирующей плоскостью Ф, перпендикулярной к ребрам поверхности.

По теореме о проецировании прямого угла (если одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то прямой угол проецируется на эту плоскость проекций без искажения) фронтальные проекции ребер и секущей плоскости будут взаимно перпендикулярны, так как ребра являются в данном примере фронталями. В сечении получим треугольник 1-2-3 (1 2;3;1; 2; 3). Натуральную (действительную) величину сторон треугольника можем определить любым из ранее изученных методов. В данном случае проще использовать метод замены плоскостей проекций:

104

V/H -W/H1; H1 II Ф (X1 II Ф ) => l121З1 - натуральная величина нормального сечения.

2. На продолжении проекции Ф плоскости Ф ( на прямой k ) построим развертку 3 ; 2 ; 3 линии нормального сечения. Через полученные точки проведем перпендикуляры к прямой k. На этих перпендикулярах будут находиться проекции ребер поверхности на плоскости развертки.

3. Мысленно разрежем данную поверхность по ребру CF, и будем последовательно совмещать с плоскостью развертки боковые грани призмы. При этом концы А, В, С, D, Е, F ребер будут совмещаться в плоскостях, параллельных секущей плоскости Ф. Эти плоскости будут проецироваться на V в прямые, параллельные проекции Ф .




4. В пересечении соответствующих проекций ребер и этих плоскостей получим точки Во, Ао, Со. Соединив эти точки ломаной линией, получим развертку боковой поверхности. В общем случае развертка поверхности данной призмы может быть, выполнена на любом месте листа чертежа. Для этого прямуюk проводим в любом месте (^рис8.2)) и на ней строим развертку Зо2о1о3о нормального сечения поверхности призмы.

Через полученные точки проводим перпендикуляры к прямой k и откладываем на них размеры соответствующих ребер, зная, что на плоскость проекции V они проецируются без искажения: loA0=l A'';

105

2oBo=2// В";, , .Соединив точки Со, Во, ... Fo ломаной линией, получим развертку боковой поверхности призмы. Чтобы получить полную развертку призмы необходимо к развертке боковой поверхности пристроить основания призмы

8.2.Способ раскатки

Рис.8.3 В этом случае используется частное положение ребер призмы (боковые ребра - фронтали, а ребра оснований - горизонтали) и теорема о проецировании прямого угла (приведена в п. 8.1).

Рис. 8.2

Рис 8.3

106

При развертывании способом раскатки концы А, В, С, ребер поверхности будут перемешаться в плоскостях, перпендикулярных этим ребрам (ребра будут осями вращения этих точек), в данном примере - во фронтально — проецирующих плоскостях. Фронтальные проекции фа, Фв, Фс этих плоскостей будут перпендикулярны к фронтальным проекциям ребер и пройдут через фронтальные проекции А", В , соответствующих точек.

Разрежем (мысленно) поверхность по ребру CF и будем поочередно совмещать (раскатывать) грани с плоскостью развертки. При совмещении грани CFEB положение точек С и F не изменится. Положение Во точки В на развертке определяется тем, что она отстоит от точки С на расстоянии ВоС =ВС, равном длине отрезка ВС (ВС в данном случае - горизонталь), и принадлежит проекции Фв плоскости фб (в которой она вращается). Используя циркуль, находим точку Во на развертке. Аналогично находим остальные точки - Ао, Со,... Соединив найденные точки соответствующими прямыми, получаем развертку боковой поверхности призмы заданной поверхности. Для получения полной развертки призмы достаточно к развертке боковой поверхности пристроить основания призмы треугольник АоВоСо и треугольник DoEoFo/

Развертки деталей, ограниченных плоскостями или развертывающимися кривыми поверхностями, могут быть развернуты и совмещены с плоскостью точно, В этом случае на развертке сохраняются точки и длины линий, лежащих на поверхности, причем каждой точке и отрезку прямой на развертке соответствует вполне определенная и единственная точка (или отрезок прямой) на поверхности и наоборот.

Развертки деталей, ограниченных не развертывающимися поверхностями, строят приближенно (например, поверхность сферы).

8.3.Способ триангуляции (способ треугольников)

Способ треугольников (способ триангуляции) используется для построения развертки боковой поверхности пирамиды, а так же для построения боковой поверхности линейчатых поверхностей. Пример. Построить развертку боковой поверхности пирамиды SABC(рис 8.4,).

Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников - граней пирамиды. Поэтому построение развертки поверхности пирамиды сводится к



107

определению действительной величины ребер пирамиды и построению по трем сторонам треугольников - граней пирамиды.

На рис 8.4 определение действительной длины ребер пирамиды выполнено с помощью вращения их вокруг оси i (iS и iH). Путем вращения ребра пирамиды совмещаются с плоскостью (плоскость  V и i). Определив действительные величины ребер [S А2], [S B2], [S C2], приступаем к построению развертки. Из произвольной точки So проводим произвольную прямую а, откладываем на ней от точки So[SoA0][S А2]. Из точки Ао проводим дугу радиусом

г1=[AB] , а из точки So- дугу радиусом Ri=[S B2]. В пересечении дуг полусаем вершину Во треугольника S.0AoBo (треугольник SoAoBoS треугольника SAB - грани пирамиды). Аналогично находятся точки So и Ао. Соединив точки AoB.oC0AoSo, получим развертку боковой поверхности пирамиды SABC.

При развертке линейчатых ( поверхности, образованные движением прямой линии, называют линейчатыми), развертывающихся поверхностей последние рассматривают как состоящие из очень большого числа бесконечно малых плоских элементов, иначе говоря, заменяют эту поверхность многогранной
108

поверхностью (аппроксимируют). Развертку поверхности строят как суммы разверток треугольных граней вписанной многогранной поверхности.

Заменяя плавную кривую ломаной, следует разбить эту кривую на такие дуги, длины которых возможно мало отличаются от сторон ломаной, В этом случае стороны многоугольников будут очень мало отличаться от другой развернутой кривой. Этот способ построения разверток называется способом триангуляции - развертываемая поверхность аппроксимируется многогранной поверхностью с треугольными гранями.

Пример. Построить развертку полной поверхности (боковой поверхности, поверхности основания и сечения) усеченного конуса вращения, рис 8.5

1. Делим основание конуса на 12 равных частей.

2. Соединяем эти 12 точек с вершиной (12 образующих). Строим их фронтальные проекции. Затем строим горизонтальную проекцию сечения. Построение видно из чертежа.

3. Боковая поверхность конуса вращения развертывается в сектор круга с углом

=360°*D/2L,

где D - диаметр окружности основания конуса, а L - величина образующей конуса.

4. Затем откладываем на дуге 12 отрезков, равных 1/12 длины

окружности - основание конуса. Разрежем (мысленно) конус по образующей наибольшего размера.

На развертке необходимо откладывать истинные размеры образующих конуса, поэтому следует их определить. На фронтальной проекции только крайние образующие, проходящие через точки 1 и 7, проецируются без искажений.

Чтобы не загромождать чертеж, рядом, с фронтальной проекцией конуса чертим образующую S1 7i, равную образующей S"7 и параллельную ей.

На этой образующей отмечаем параллельно основанию конуса точки пересечения образующих конуса с наклонной секущей плоскостью (кроме точек 1 и 7),

Далее на образующих развертки от точек 1,2,3,..., 12 откладываем размеры образующих конуса h1,h2,h3 ,h12.

109

Натуральную величину сечения строим прежде изученными методами. В данном примере использован метод замены плоскостей проекций.

К развертке боковой поверхности усеченного конуса пристраиваем круг - основание конуса и эллипс - основание конуса наклонной плоскостью.

Таким образом, получили полную развертку усеченного конуса методом триангуляции.




Рис 8.5

110
1   ...   4   5   6   7   8   9   10   11   12

Похожие:

Начертательная геометрия iconНачертательная геометрия
Н 59 Начертательная геометрия. Инженерная графика0 : рабочая тетрадь. Ч. / Т. П. Нечаева, И. А. Мельникова. – Ставрополь : агрус,...
Начертательная геометрия iconУчебное пособие по курсу «Начертательная геометрия»
Н36 Начертательная геометрия. Модуль №4: учеб метод. Пособие / сост. Т. А. Варенцова, Г. Н. Уполовникова. – Тольятти : тгу, 2007....
Начертательная геометрия iconУчебное пособие по курсу «Начертательная геометрия»
Н36 Начертательная геометрия. Модуль №1: учеб метод. Пособие / сост. Т. А. Варенцова, Г. Н. Уполовникова. – Тольятти : тгу, 2007....
Начертательная геометрия iconУчебное пособие по курсу «Начертательная геометрия»
Н36 Начертательная геометрия. Модуль №2 : учеб метод. Пособие / сост. Т. А. Варенцова, Г. Н. Уполовникова. – Тольятти : тгу, 2007....
Начертательная геометрия iconДемонстрационные материалы с элементом интерактивности в дистанционном курсе «начертательная геометрия»
«Начертательная геометрия», необходимо в полной мере воспользоваться потенциалом компьютерных технологий для обеспечения наглядности,...
Начертательная геометрия iconНачертательная геометрия
Начертательная геометрия: Краткие сведения, задачи и упражнения для самостоятельной работы студентов и для практических занятий /...
Начертательная геометрия iconНачертательная геометрия. Инженерная графика
Дисциплина "Начертательная геометрия. Инженерная графика" является фундаментальной дисциплиной в подготовке бакалавра и дипломированного...
Начертательная геометрия iconУчебно-методический комплекс по дисциплине «Начертательная геометрия. Инженерная графика» Для направления 140600 «Электротехника, электромеханика и электротехнология»
«Начертательная геометрия. Инженерная графика», утвержденной департаментом образовательных программ и стандартов профессионального...
Начертательная геометрия icon«начертательная геометрия и графика»
Совершенствование триботехнических характеристик тяжелонагруженных подшипников скольжения
Начертательная геометрия iconУчебное пособие по курсу «Начертательная геометрия»
Построить комплексные чертежи точек: А(15,30,0), В(30,25,15), С(30,10,15), D(15,30,20)
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org