Динамика вязких циркуляционных течений в трубах и поверхностных воронках



страница4/5
Дата01.05.2013
Размер0.5 Mb.
ТипАвтореферат
1   2   3   4   5

В приложении дан аналитический обзор работ по прикладной механике циркуляционных течений, обсуждается современное состояние проблемы.
ОСНОВНЫЕ ВЫВОДЫ


    1. Обзор современного состояния гидравлики циркуляционных течений позволяет сделать вывод, что любое вязкое циркуляционное течение является комбинацией «свободного» (потенциального) и «вынужденного» (твердого) вихрей. Причем трансформация циркуляционно-продольного течения за локальным завихрителем по длине цилиндрической трубы происходит путем перераспределения его потенциальной и вихревой составляющих в пользу последней, в результате чего закрученный на входе в трубу поток по мере продвижения по аксиальной координате приобретает квазитвердое вращение, характеризующее стадию вырождения циркуляции.

    2. Наиболее перспективное направление математического моделирования гидродинамики турбулентных циркуляционных течений сформировалось в рамках теории переноса завихренности Тейлора; это определяется тем, что уравнения Тейлора соответствуют специфике пространственных циркуляционных течений, где завихренность является их важнейшей характеристикой, прямо связанной с циркуляций , .

    3. Разработанная в диссертации на основе модели Тейлора математическая модель установившегося циркуляционно-продольного течения в цилиндрической трубе за локальным завихрителем, включающая компоненты молекулярных и турбулентных напряжений, позволяет получить аналитические решения, описывающие радиально-аксиальное распределение структурных характеристик течения, а также проследить динамику их изменения в зависимости от начальной циркуляции и числа Рейнольдса.

    4. В дифференциальных уравнениях динамики турбулентной среды в рамках теории Тейлора можно выделить слагаемые, содержащие эффективную вязкость как сумму молекулярной и турбулентной (), и слагаемые, содержащие только турбулентную вязкость (); первые позволяют рассматривать турбулентное течение как движение эффективно вязкой жидкости, вторые - отражают турбулентный перенос (диффузию), в связи с чем они названы диффузионными. При этом структурные характеристики турбулентного циркуляционно-продольного течения в цилиндрической трубе в основном определяются тензором напряжений с виртуальной вязкостью радиального направления , то есть радиальными пульсациями скоростей.


    5. Циркуляционно-продольный поток по длине трубы в силу диссипации механической энергии за счет вязкого трения и турбулентной диффузии формируется в течение со сложным «свободно-вынужденным вращением», описываемым разложением Фурье-Бесселя при ламинарном течении или законом, близким к «вихрю Бюргерса» - при турбулентном, при этом аксиальное падение азимутальных скоростей определяется экспоненциальной функцией. Придание продольно-осевому течению закрутки приводит к фундаментальной трансформации радиально-аксиального распределения продольных скоростей в нем; таким образом, продольная составляющая в циркуляционно-продольном течении приобретает свойства зависимого от распределения азимутальных скоростей вторичного течения. Радиальные профили осевых скоростей и их трансформации по длине трубы описываются произведениями рядов Фурье-Бесселя для ламинарного течения и интегральными показательными функциями для турбулентного потока.

    6. Для циркуляционно-продольных течений сплошной среды характерно наличие возвратных токов в центральной приосевой зоне на участке, примыкающем к началу трубы, при этом возвратное приосевое течение формирует вокруг себя рециркуляционную зону; в потоках с вихревым жгутом область с возвратным течением и рециркуляционная зона отсутствуют. Для сплошных течений также характерно резкое нарастание положительных осевых скоростей в кольцевой зоне, непосредственно охватывающей область обратных токов, здесь имеет место поддерживающий баланс масс скачок осевых скоростей, не успевающий распространиться на более далекие от области возвратного течения периферийные слои; явление можно характеризовать как инициированную возвратным приосевым течением инерционную волну, концентрично расходящуюся от оси к стенкам водовода и затухающую по их достижении.

    7. Анализ вихревой структуры вязкого циркуляционно-продольного течения в цилиндрической трубе позволяет сделать вывод, что поток во всей области движения является вихревым и, таким образом, не является потенциальным, не является он и винтовым, ибо не соответствует условию . Завихренность, генерируемая в приосевой зоне и имеющая на входе в проточный канал максимальное значение, распространяется с продвижением потока по аксиальной координате на все более обширную область, но подавляется, и периферийных слоев ближе к стенкам трубы или слоев на значительном удалении от входа достигает значительно ослабленной; генерирование вихрей в ламинарном течении происходит также вблизи твердых поверхностей, однако пристенные вихри на порядок менее значимы, чем внутренние.

    8. Установлено, что концентрация значительных касательных и нормальных напряжений в циркуляционно-продольном течении имеет место на начальном участке трубы в приосевой зоне потока, здесь наблюдаются максимальные радиальные и аксиальные градиенты всех компонент скорости, здесь поток теряет наиболее существенную часть своей энергии.

    9. На основе метода Рэлея и теории переноса звихренности Тейлора получен критерий локальной устойчивости циркуляционно-продольного течения к случайным возмущениям (критерий Рэлея), согласно которому устойчивость течения в его произвольной локальной области определяется знаком частной производной по радиусу произведения циркуляции на аксиальную компоненту вихря (): при положительном значении критерия центробежные силы стремятся подавить случайные возмущения, и циркуляционное течение в исследуемой области будет устойчивым, при отрицательном знаке - случайные возмущения нарастают и течение теряет устойчивость. Критерий Рэлея позволяет выделить в циркуляционно-продольном течении зоны генерации случайных возмущений и зоны их подавления; критическое значение числа Рэлея при ламинарно-турбулентном переходе соответствует .

    10. Критерием устойчивости циркуляционно-продольного течения к смене формы движения от осесимметричной к асимметричной спиралевидной является число Ричардсона, равное частному от деления числа Рэлея на квадратичный инвариант тензора скоростей деформации (). В ламинарном течении можно выделить три области с различной степенью устойчивости: первая пролегает вдоль стенок трубы и характеризуется слабой неустойчивостью (), ниже по глубине в кольцевом сечении расположена область устойчивого () течения с подавлением случайных возмущений (вторая область), наиболее неустойчивой () является третья область - центральное вихревое ядро; в вихревом ядре, в свою очередь, выделяются три зоны: зона слабой неустойчивости в начале водовода, плавно переходящая в зону дестабилизации течения с нарастающей по мере стягивания к оси и продвижения вдоль трубы неустойчивостью, и зону потери устойчивости - тонкий вихревой шнур; потеря устойчивости вихревым шнуром влечет нарастание возмущений и в результате дестабилизацию течения в целом, проявляющуюся в смене осесимметричного течения спиралевидным. В турбулентном циркуляционно-продольном течении следует выделить две области: примыкающую к стенкам трубы периферийную область устойчивого () течения, сокращающуюся по мере продвижения по аксиальной координате, и концентрично расширяющуюся по той же координате область неустойчивого () внутреннего вихревого ядра закрученного потока, в свою очередь содержащего три зоны, аналогичные зонам вихревого ядра ламинарного течения с теми же свойствами, при неустойчивость распространяется на все сечение турбулентного потока; смена формы движения циркуляционно-продольного течения от осесимметричного к спиралевидному соответствует в области вихревого шнура.

    11. Другим «классическим» циркуляционным течением, рассмотренным в диссертационном исследовании, является поверхностная вихревая воронка. Разработанная аналитическая модель такого течения позволяет рассчитать распределения всех компонент скорости (, , ) в поверхностной вихревой воронке, а также функции тока и потенциала , построить гидродинамическую сетку течения в радиальной проекции и профиль свободной поверхности воронки . Структурные характеристики в поверхностной вихревой воронке описываются суммами рядов Фурье-Бесселя и интегральными показательными функциями, а распределение окружных скоростей подчиняется экспоненциальному закону, близкому к «свободно-вынужден-ному вихрю Бюргерса», когда вблизи оси () жидкость вращается как «твердое тело», а на периферии распределение тангенциальных скоростей соответствует «свободному вихрю»; при этом течение в поверхностной воронке не является ни потенциальным, ибо , ни винтовым, т.к. .

    12. Установлено, что профиль свободной поверхности вихревой воронки и ее глубина на оси вращения определяются интенсивностью генерирующей воронку циркуляции и значениями чисел Рейнольдса и Фруда . При этом условие, определяющее предотвращение прорыва воздушного жгута вихревой воронки через устье глубинного водоприемного отверстия в напорный водовод, выражается неравенством

.

    1. При физическом моделировании по определяющему критерию Фруда глубину воронки, полученную на модели, необходимо пересчитывать на натуру с масштабным коэффициентом , где - линейный масштаб модели, либо для получения глубины воронки на модели, соответствующей линейному масштабному пересчету на натуру, идти на форсирование скорости в раз по отношению к ее значению по правилу Фруда.

    2. Изложенные в диссертационной работе математические модели циркуляционно-продольного течения в трубе и в поверхностной вихревой воронке прошли верификационную проверку по эмпирическим данным, полученным разными авторами. Верификационная проверка показала возможность применения этих моделей в инженерной практике и подтвердила универсальность полученных решений, позволяющую использовать их при оптимизации структуры циркуляционно-продольных течений в соответствии с технологическими требованиями, или оптимизации параметров устройств и сооружений в любых областях техники, где целесообразно применение закрученных потоков жидкости, а также при прогнозировании прорыва воронок в напорные водоводы гидротехнических сооружений.

    3. В диссертации рассмотрена одна из фундаментальных проблем гидравлики, заключающаяся в целенаправленной интенсификации или подавлении турбулентности движущейся в поле центробежных сил среды. Основой управления турбулентностью среды является формирование циркуляционного течения определенной структуры, где ключевым параметром выступает турбулентная вязкость , которая не является свойством жидкости, а является свойством потока; целенаправленно формируя структуру течения, можно управлять турбулентной вязкостью; турбулентная вязкость нарастает в циркуляционном течении пропорционально радиальному градиенту угловой скорости , повышением этого градиента достигается эффект нарастания турбулентных напряжений, понижением его - эффект подавления турбулентности. Способность целенаправленно моделировать структуру течения достигается с помощью локального осевого лопастного завихрителя, ибо его направляющие лопасти могут быть спрофилированы вдоль радиуса любым необходимым образом.

    4. Выполненные с использованием лазерных доплеровских измерителей скорости и термоанемометрической аппаратуры исследования турбулентной структуры сдвигового течения при взаимодействии спутных коаксиальных потоков со встречной циркуляцией позволили составить физическое описание картины течения, которое сводится к следующему: в месте объединения коаксиальных противоположно закрученных потоков наблюдается высокий градиент угловых скоростей вдоль текущего радиуса, практически стремящийся к бесконечности в сдвиговом слое на границе макровихрей; это приводит к появлению здесь вторичных вихрей, которые, в свою очередь, генерируют вихри следующего порядка малости и т.д.; таким образом, механическая энергия переходит от начального течения коаксиальных закрученных потоков к вихрям все более мелкого масштаба, пока в результате работы, совершаемой против сил вязкого трения, не преобразуется в тепловую; процесс передачи энергии к меньшим масштабам, называемый энергетическим вихревым каскадом, характеризуется исключительно высокой интенсивностью; генерирование вторичных и последующих вихрей с орбитальными скоростями, равными окружным скоростям входящих во взаимодействие противоположно закрученных потоков, определяет скорость радиального массо- и энергопереноса.

    5. Показано, что степень турбулентности циркуляционного течения определяется соотношением в нем «свободного» и «вынужденного» вихрей; чем более поток соответствует течению с вращением по «твердому телу», тем ниже степень его турбулентности, на этом эффекте основана технология подавления турбулентности в циркуляционном потоке (технология «Око тайфуна»); показано, что технология подавления турбулентности весьма эффективна при гидроциклонной сепарации из воды мелкодисперсных примесей.

    6. В результате выполненных исследований разработаны методы гидравлического расчета устройств с интенсификацией и подавлением турбулентности. Эти исследования показали значительные перспективы, открывающиеся с решением проблемы управления турбулентностью движущейся среды; считая это направление приоритетным, полагаю необходимым в дальнейшем сосредоточить внимание на глубоком экспериментальном изучении структурного моделирования свойств турбулентных течений и внедрении новых технологий.
1   2   3   4   5

Похожие:

Динамика вязких циркуляционных течений в трубах и поверхностных воронках iconКонспект и самоанализ урока по теме: «Схема поверхностных течений Мирового океана»
Соответствует ли содержание данного урока действующей программе? Главные знания и умения
Динамика вязких циркуляционных течений в трубах и поверхностных воронках iconОсобенности пленочных течений в газо-жидкостных коллекторах – регенераторах солнечных абсорбционных систем Дорошенко А. В
...
Динамика вязких циркуляционных течений в трубах и поверхностных воронках iconИ газа с помощью современных программных продуктов а. Н. Кочевский, канд техн наук
Ситуация еще более усложняется при наличии теплопереноса, при рассмотрении течений смеси нескольких веществ, течений со свободными...
Динамика вязких циркуляционных течений в трубах и поверхностных воронках iconРазвитие систем стратифицированных течений с волновыми потоками
Такой подход, включающий рассмотрение всей совокупности течений, и в том числе волновых потоков, как системы, развивается в данной...
Динамика вязких циркуляционных течений в трубах и поверхностных воронках iconГеологическая деятельность поверхностных текучих вод
К ним относятся все воды, стекающие по поверхности, начиная от дождевых струй до постоянных потоков мощных речных систем. Источником...
Динамика вязких циркуляционных течений в трубах и поверхностных воронках iconМоделирование течений жидкости и газа с поверхностью раздела сред, турбулентностью и стратификацией
В докладе представлены результаты численного исследования современными методами (rans, dns, les) несжимаемых течений: (а) с поверхностью...
Динамика вязких циркуляционных течений в трубах и поверхностных воронках iconРасчет потерь воды фонтаном
При устройстве циркуляционных систем водоснабжения фонтанов необходимо учитывать количество воды, теряемой на разбрызгивание, унос...
Динамика вязких циркуляционных течений в трубах и поверхностных воронках iconРасчет влияния плотности поверхностных состояний в оксиде кремния на ток поверхностной рекомбинации в биполярных микроэлектронных структурах
Шокли на границе раздела пассивирующий окисел-база с учетом влияния на концентрацию носителей заряда поверхностных состояний в пассивирующем...
Динамика вязких циркуляционных течений в трубах и поверхностных воронках iconОтчет о социологическом исследовании
...
Динамика вязких циркуляционных течений в трубах и поверхностных воронках iconСтруктурные и технологические закономерности формирования поверхностных наноструктурированных слоев из материалов с эффектом памяти формы плазменным напылением механоактивированных порошков
В настоящей работе приводятся результаты исследования по формированию на сталях поверхностных наноструктурированных слоев из материалов...
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org