А. В. Клемина, И. Ю. Демин, Н. В. Прончатов-Рубцов медицинская акустика: ультразвуковая диагностика медико-биологических сред



страница4/18
Дата26.07.2014
Размер1.31 Mb.
ТипУчебно-методическое пособие
1   2   3   4   5   6   7   8   9   ...   18

1.3. Линеаризация полной системы уравнений акустики


Так как уравнения нелинейные, а мы будем интересоваться звуковыми волнами малых амплитуд, надо произвести линеаризацию уравнений и привести их к линейной системе.



– начальные равновесные характеристики,

– добавки, они несильно изменяют среднее значение, т.е. Введем коэффициент Маха: .

Подставляем в уравнение Эйлера: . Пренебрегаем нелинейностью второго порядка - , получаем:



Слагаемое – второй порядок малости, в итоге получим уравнение:



.

Уравнение Эйлера для гидростатики: . Тогда .



(1.5)

- уравнение акустики идеальной жидкости.

Подставляем (*) в уравнение непрерывности: .

. Тогда зависимостью от времени для начального значения плотности можно пренебречь и

где – второй порядок нелинейности, получим

(1.6)

– линеаризованное уравнение непрерывности.

Рассмотрим уравнение состояния, оно нелинейно: И будем рассматривать трехмерный случай , а – меняется сильно по координате z: , . Найдем полную производную давления по времени .

С другой стороны по определению полной производной:.

Получаем .

Учитывая слабую зависимость и от x, y и t ( и gif" align=bottom>зависят от z), имеем:



(1.7)

- уравнение состояния для нашего частного случая.

Если можно пренебречь изменениями давления и плотности по координате z, то полная система линеаризованных уравнений акустики идеальной однородной жидкости выглядит следующим образом:


(1.8)

Так как при линеаризации мы пренебрегали слагаемым , то , такое движение называется безвихревым и можно ввести потенциал , . Подставим в систему: . Из третьего уравнения системы: и подставим в уравнение непрерывности:



Отсюда: – волновое уравнение.

Можно показать, что такому же уравнению удовлетворяют . Решением волнового уравнения являются две плоские волны: – две волны бегут в разные направления.

Перейдем к одномерному случаю :

Перепишем волновое уравнение в переменных и :

Подставив все слагаемые в уравнение, получим:



, то есть, звуковые волны – это продольные полны.

Соотношения между характеристиками плоской бегущей волны:



Таким образом,

В плоской волне: – акустический закон Ома. Похожее выражение встречается в радиотехнике: тогда – акустическое сопротивление, .

Оценим для воды: м/с, кг/м3, . Для воздуха:



м/с, кг/м3, .

Величина – называется волновой проводимостью среды.

Если в качестве функций и g брать тригонометрические функции, то такие волны носят название монохроматических плоских волн.

, где – комплексная амплитуда,

Подставим в волновое уравнение: .

Получим – уравнение Гельмгольца (распределение амплитуды в пространстве).

Введем понятие неоднородной плоской волны: , амплитуда изменяется.

Фазовая скорость: – характеризует направление распространения, – направлено вдоль фронта волны. – поверхность постоянной фазы, – поверхность постоянной амплитуды, . Фазовая скорость неоднородной волны меньше, чем скорость распространения звука в среде.

1   2   3   4   5   6   7   8   9   ...   18

Похожие:

А. В. Клемина, И. Ю. Демин, Н. В. Прончатов-Рубцов медицинская акустика: ультразвуковая диагностика медико-биологических сред iconПрограмма по общей патологии для студентов медико-биологических факультетов
Государственных образовательных стандартов по специальностям 040800 "Медицинская биохимия", 040900 "Медицинская биофизика", 041000...
А. В. Клемина, И. Ю. Демин, Н. В. Прончатов-Рубцов медицинская акустика: ультразвуковая диагностика медико-биологических сред iconН. Д. Семкин Аппаратура медико-биологических исследований в космосе
Компьютерные технологии в медико-биологических исследованиях. Сигналы биологического происхождения и медицинские изображения
А. В. Клемина, И. Ю. Демин, Н. В. Прончатов-Рубцов медицинская акустика: ультразвуковая диагностика медико-биологических сред iconМедицинская диагностика
Модель онтологии предметной области "медицинская диагностика". Часть Формальное описание причинно-следственных связей, причин значений...
А. В. Клемина, И. Ю. Демин, Н. В. Прончатов-Рубцов медицинская акустика: ультразвуковая диагностика медико-биологических сред iconМногоцветный анализ в проточной цитометрии для медико-биологических исследований
Гоу дпо «Санкт-Петербургская медицинская академия последипломного образования Федерального агентства по здравоохранению и социальному...
А. В. Клемина, И. Ю. Демин, Н. В. Прончатов-Рубцов медицинская акустика: ультразвуковая диагностика медико-биологических сред iconМедицинская генетика: чем она может помочь приемным родителям и детям
Галина Евгеньевна Руденская – доктор биологических наук, главный научный сотрудник научно-консультативного отдела Медико-генетического...
А. В. Клемина, И. Ю. Демин, Н. В. Прончатов-Рубцов медицинская акустика: ультразвуковая диагностика медико-биологических сред iconСборник трудов XVI сессии Российского акустического общества. Т. М.: Геос, 2005. 377 с
Акустика речи. Медицинская и биологическая акустика. Архитектурная и строительная акустика. Шумы и вибрации. Аэроакустика. Сборник...
А. В. Клемина, И. Ю. Демин, Н. В. Прончатов-Рубцов медицинская акустика: ультразвуковая диагностика медико-биологических сред iconРабочая учебная программа медицинская паразитология (для студентов 5 курса медико-профилактического факультета)
Тема: «Медицинская паразитология, ее значение в обеспечении здоровья населения. Предмет медицинская паразитология. Основные понятия,...
А. В. Клемина, И. Ю. Демин, Н. В. Прончатов-Рубцов медицинская акустика: ультразвуковая диагностика медико-биологических сред iconЗаболеваемость, инвалидность вследствие болезней костно-мышечной системы, их медико-социальная значимость и научное обоснование системы реабилитации инвалидов 14. 02. 06 медико-социальная экспертиза и медико-социальная реабилитация
Работа выполнена в гбоу дпо «Иркутская государственная медицинская академия последипломного образования»
А. В. Клемина, И. Ю. Демин, Н. В. Прончатов-Рубцов медицинская акустика: ультразвуковая диагностика медико-биологических сред iconУдк 616. 316 –073. 43 Ультразвуковая диагностика хронического паренхиматозного сиаладенита
Модуль хирургической стоматологии Казахского Национального медицинского университета им. С. Д. Асфендиярова
А. В. Клемина, И. Ю. Демин, Н. В. Прончатов-Рубцов медицинская акустика: ультразвуковая диагностика медико-биологических сред icon«Клиническая лабораторная диагностика»
Титов В. Н., Ощепкова Е. В., Дмитриев В. А., Гущина О. В., Ширяева Ю. К., Яшин А. Я. Гиперурикемия – показатель нарушения биологических...
Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org