И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967)



страница15/28
Дата08.10.2012
Размер1.86 Mb.
ТипДокументы
1   ...   11   12   13   14   15   16   17   18   ...   28

б) Индукция как основа метода доказательств и опровержений



Сигма. Дзета прав. Какое несчастье!

Дзета. Несчастье?

Сигма. Да. Вы теперь хотите ввести новую «наив­ную догадку» о соотношении между V, Е и F для любо­го многогранника, не правда ли? Невозможно! Взгляните на большую толпу контрапримеров. Многогранники с по­лостями, многогранники с кольцеобразными гранями, с туннелями, сросшиеся друг с другом в ребрах, в верши­нах... V—E+F может принять вообще любое значение. Вы, пожалуй, не сумеете разглядеть в этом хаосе какой-нибудь порядок! Твердую почву эйлеровых многогран­ников мы покинули для болота! Мы невозвратно потеряли наивную догадку и не имеем надежды получить другую!

Дзета. Но...

Бета. А почему нет? Вспомните кажущийся безна­дежным хаос в нашей таблице чисел вершин, ребер и гра­ней даже у самых обыкновенных многогранников.





Многогранники

F

V

E

1.

Куб

6

8

12

2.

Треугольная призма

5

6

9

3.

Пятиугольная призма

7

10

15

4.

Четырехугольная пирамида

5

5

8

5.

Треугольная пирамида

4

4

6

6.

Пятиугольная пирамида

6

6

10

7.

Октаэдр

8

8

12

8.

«Башня»

9

9

16

9.


Усеченный куб

7

10

15


Мы столько раз не могли .подобрать для них формулу118.Но потом внезапно нас поразил настоящий закон, управ­ляющий ими:
V-E+F = 2.
Каппа (в сторону). «Настоящий закон»? Странное название для полнейшей ложности.

Бета. Все, что мы должны теперь сделать, это допол­нить нашу таблицу новыми данными для неэйлеровых многогранников и поискать новую формулу: при наличии терпеливого прилежного наблюдения и некоторого сча­стья мы попадем на правильную формулу; затем мы мо­жем снова ее улучшить, применяя метод доказательств и опровержений!

Дзета. Терпеливое, прилежное наблюдение? Пробо­вать одну формулу за другой? Может быть, вы придумаете гадательную машину, которая будет давать вам случайные формулы и пробовать их на вашей таблице? Неужели вы так думаете о прогрессе науки?

Бета. Не понимаю вашего гнева. Ведь вы, конечно, согласитесь, что начало нашего знания, наши наивные догадки могут прийти только после прилежного наблюде­ния и внезапного прозрения, как бы много ни взял на себя наш критический метод «доказательств и опровержений», после того как мы найдем наивную догадку? Любой дедуктивный метод должен начинаться с индуктивного основания!

Сигма. Ваш индуктивный метод никогда не принесет удачи. Мы пришли к F-E + F=2 только потому, что в нашей первоначальной таблице не было ни картинной рамы, ни морского ежа. Теперь же, когда этот историче­ский инцидент...

Каппа (в сторону) ... или благосклонное божествен­ное руководство...

Сигма... более уже не существует, вы никогда не смо­жете из хаоса «индуцировать» порядок. Мы начали с дол­гого наблюдения и со счастливым прозрением — и потер­пели поражение. Теперь вы предлагаете начать снова с еще более долгим наблюдением и с более счастливым про­зрением. Даже если бы мы пришли к какой-нибудь новой наивной догадке — в чем я сомневаюсь — мы кончили бы только такой же путаницей.

Бета. Может быть, вы хотите совсем отказаться от исследования? Нам нужно начать снова — прежде всего с некоторой новой наивной догадки, а затем снова пройти через метод доказательств и опровержений.

Дзета. Нет, Бета. Я согласен с Сигмой, поэтому и не начну опять с новой наивной догадки.

Бета. Тогда с чего же вы хотите начать, если не с индуктивного обобщения на низшем уровне в качестве наивной догадки? Или у вас есть какой-нибудь другой ме­тод для начала?


1   ...   11   12   13   14   15   16   17   18   ...   28

Похожие:

И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconДоказательства и опровержения
Перевод с английского И. И. В е с е л о в с к о г о издательство “наука” Москва 1967
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) icon2. Книга М. В. Ткачевой Домашняя математика, из которой взято замечательное стихотво-рение, связанное с теоремой Пифагора
Целью данного реферата является: • Рассмотреть классические и малоизвестные доказательства теоремы, такие как доказательства Гарфилда,...
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconДля участия в аукционе заявители представляют
Администрации Веселовского района Ростовской области по адресу: п. Веселый Веселовского района Ростовской области, пер. Комсомольский...
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconВопросы для подготовки к экзамену по математической логике (2 семестр)
Доказательства и теоремы ив, равносильность линейного доказательства и доказательства в виде дерева
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconИздательство «наука» главная редакция восточной литературы
Пер с англ и комментарий Е. В. Антоновой. Пре-дисл. Н. Я. Мерперта. Изд-во «Наука»
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconПоппер Тема Критический рационализм как философия науки, Лакатос
Метод проб и ошибок. Лакатос о догматическом и методологическом фальсификационизме. Структура научно-исследовательской программы....
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconМистика. Религия. Наука
Мистика. Религия. Наука. Классики мирового религиоведения. Антология. / Пер с англ., нем., фр. Сост и общ ред. А. Н. Красникова....
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconВейль Г. Математический способ мышления (под ред. Б. В. Бирюкова и А. Н. Паршина; пер с англ. Ю. А. Данилова)
Источник сканирования: Вейль Г. Математический способ мышления (под ред. Б. В. Бирюкова и А. Н. Паршина; пер с англ. Ю. А. Данилова)....
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconУрок кейс метод Класс 8 Время занятия 2 учебных часа
Перед учителем математики стоит задача рассмотреть теорему Пифагора (показать различные доказательства этой теоремы, использование...
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconНации и национализм / Б. Андерсон, О. Бауэр, М. Хрох и др.; Пер с англ и нем. Л. Е. Переяславцевой, М. С. Панина, М. Б. Гнедовского. М.: Праксис, 2002. 416 с. (Серия «Новая наука политики»)

Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org