И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967)



страница9/28
Дата08.10.2012
Размер1.86 Mb.
ТипДокументы
1   ...   5   6   7   8   9   10   11   12   ...   28

в) Метод доказательств и опровержений



Гамма. Я предлагаю принять цилиндр в качестве на­стоящего контрапримера для рассматриваемой теоремы. Я изобретаю новую лемму (или леммы), которая этим примером опровергается, и добавляю эту лемму (леммы) к первоначальному списку. Это как раз и делал Альфа. Но, вместо того чтобы «скрывать» их так, чтобы они сдела­лись скрытыми, я возвещаю их публично.

Теперь цилиндр, ставивший ранее в тупик,— опасный глобальный, а не локальный контрапример (третьего типа) по отношению к старому анализу доказательства и соот­ветствующей старой теореме, этот цилиндр станет безопас­ным глобальным и одновременно локальным контрапримером (второго типа) по отношению к новому ана­лизу доказательства и соответствующей новой теореме.

Альфа думал, что его классификация контрапримеров была абсолютной; в действительности же она относилась только к его анализу доказательства. По мере роста ана­лиза доказательства контрапримеры третьего типа превра­щаются в контрапримеры второго типа.

Ламбда. Это верно. Анализ доказательства будет «строгим», или «имеющим силу», и соответствующая мате­матическая теорема — истинной тогда и только тогда, если не будет для них контрапримеров третьего типа. Я назы­ваю этот критерий принципом обратной пере­дачи ложности, так как он требует, чтобы глобаль­ные контрапримеры были также локальными: ложность должна быть передана обратно от интуитивной догадки к леммам, от последующей части теоремы к предшествую­щей. Если какой-нибудь глобальный, но не локальный контрапример нарушает этот принцип, мы восстанавливаем его добавлением к анализу доказательства подходящей леммы. Таким образом, принцип обратной передачи лож­ности является регулятивным принципом для анализа доказательства in statu nascendi (в сстоянии зарождения), а глобальный, но не локальный контрапример — ферментом в росте ана­лиза доказательства.

Гамма. Вспомните, раньше, даже не найдя ни од­ного опровержения, мы все же сумели обнаружить три по­дозрительные леммы и продвинуться в анализе доказа­тельства!

Ламбда. Это верно. Анализ доказательства может начинаться не только под давлением глобальных контрапримеров, но также и когда люди уже выучились остере­гаться «убедительных» доказательств76.

В первом случае все глобальные контрапримеры появляются в виде контрапримеров третьего типа и все леммы начинают свою карьеру в качестве «скрытых лемм». Они приводят нас к постепенному построению анализа доказательства и так один за другим превращаются в кон­трапримеры второго типа.

Во втором случае — когда мы уже начинаем подозревать и ищем опровержений,— мы можем прийти к далеко зашедшему вперед анализу доказательства без всяких контрапримеров. Тогда мы имеем две возможности.
Первая возможность состоит в том, что нам при помощи локальных контрапримеров удастся опро­вергнуть все леммы, содержащиеся в нашем анализе доказательства. Мы можем установить, как следует, что они будут также глобальными контрапримерами.

Альфа. Вот именно так я и открыл раму картины: я искал многогранник, который после удаления одной гра­ни не мог быть развернут в один лист на плоскости.

Сигма. Тогда не только опровержения действуют как ферменты для анализа доказательства, но и анализ дока­зательства может действовать как фермент для опроверже­ния. Какой нехороший союз между кажущимися врагами!

Ламбда. Это верно. Если догадка кажется вполне допустимой или даже самоочевидной, то должно доказать ее; может оказаться, что она основана на весьма софисти­ческих и сомнительных леммах. Опровержение лемм мо­жет привести к какому-нибудь неожиданному опроверже­нию первоначальной догадки.

Сигма. К опровержениям, порожденным доказатель­ством!

Гамма. Тогда «мощь логического доказательства за­ключается не в том, что оно принуждает верить, а в том, что оно наводит на сомнения»77.

Ламбда. Но позвольте мне вернуться ко второй возможности: когда мы не находим никаких локаль­ных контрапримеров для подозреваемых лемм.

Сигма. То есть когда опровержения не помогают ана­лизу доказательства. Что же тогда может случиться?

Ламбда. Мы тогда окажемся общепризнанными чу­даками. Доказательство приобретает абсолютную респек­табельность и леммы сбросят всякое подозрение. Наш ана­лиз доказательства скоро будет забыт78. Без опровержений нельзя поддерживать подозрение; прожектор подозрения скоро выключается, если контрапример не усиливает его, направляя яркий свет опровержения на пренебреженный аспект доказательства, который остался незамеченным в сумерках «тривиальной истины».

Все это показывает, что мы не можем поместить дока­зательство и опровержение на отдельные полочки. Вот почему я предлагаю наш «метод включения лемм» перекрестить в «метод доказательств и опровержений». Позвольте мне выразить его основ­ные черты в трех эвристических правилах.

Правило 1. Если вы имеете какую-нибудь догадку, то попробуйте доказать ее и опровергнуть ее. Тщательно рассмотрите доказательство, чтобы приготовить список не­тривиальных лемм (анализ доказательства); найдите кон­трапримеры и для догадки (глобальные контрапримеры) и для подозрительных лемм (локальные контрапримеры).

Правило 2. Если у вас есть глобальный контрапри­мер, то устраните вашу догадку, добавьте к вашему анали­зу доказательства подходящую лемму, которая будет опро­вергнута им, и замените устраненную догадку исправлен­ной, которая включила бы эту лемму как условие79. Не позволяйте отбрасывать опровержения как монстры80. Сде­лайте явными все «скрытые леммы»81.

Правило 3. Если у вас есть локальный контрапри­мер, то проверьте его, не будет ли он также глобальным контрапримером. Если он будет им, то вы можете легко применить правило 2.


1   ...   5   6   7   8   9   10   11   12   ...   28

Похожие:

И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconДоказательства и опровержения
Перевод с английского И. И. В е с е л о в с к о г о издательство “наука” Москва 1967
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) icon2. Книга М. В. Ткачевой Домашняя математика, из которой взято замечательное стихотво-рение, связанное с теоремой Пифагора
Целью данного реферата является: • Рассмотреть классические и малоизвестные доказательства теоремы, такие как доказательства Гарфилда,...
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconДля участия в аукционе заявители представляют
Администрации Веселовского района Ростовской области по адресу: п. Веселый Веселовского района Ростовской области, пер. Комсомольский...
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconВопросы для подготовки к экзамену по математической логике (2 семестр)
Доказательства и теоремы ив, равносильность линейного доказательства и доказательства в виде дерева
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconИздательство «наука» главная редакция восточной литературы
Пер с англ и комментарий Е. В. Антоновой. Пре-дисл. Н. Я. Мерперта. Изд-во «Наука»
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconПоппер Тема Критический рационализм как философия науки, Лакатос
Метод проб и ошибок. Лакатос о догматическом и методологическом фальсификационизме. Структура научно-исследовательской программы....
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconМистика. Религия. Наука
Мистика. Религия. Наука. Классики мирового религиоведения. Антология. / Пер с англ., нем., фр. Сост и общ ред. А. Н. Красникова....
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconВейль Г. Математический способ мышления (под ред. Б. В. Бирюкова и А. Н. Паршина; пер с англ. Ю. А. Данилова)
Источник сканирования: Вейль Г. Математический способ мышления (под ред. Б. В. Бирюкова и А. Н. Паршина; пер с англ. Ю. А. Данилова)....
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconУрок кейс метод Класс 8 Время занятия 2 учебных часа
Перед учителем математики стоит задача рассмотреть теорему Пифагора (показать различные доказательства этой теоремы, использование...
И. Лакатос Доказательства и опровержения. Как доказываются теоремы. (Пер с англ. И. Н. Веселовского. М., Наука, 1967) iconНации и национализм / Б. Андерсон, О. Бауэр, М. Хрох и др.; Пер с англ и нем. Л. Е. Переяславцевой, М. С. Панина, М. Б. Гнедовского. М.: Праксис, 2002. 416 с. (Серия «Новая наука политики»)

Разместите кнопку на своём сайте:
ru.convdocs.org


База данных защищена авторским правом ©ru.convdocs.org 2016
обратиться к администрации
ru.convdocs.org